
SCALABLE AND CERTIFIABLE GRAPH UNLEARNING:
OVERCOMING THE APPROXIMATION ERROR BARRIER

Lu Yi & Zhewei Wei
Renmin University of China
{yilu, zhewei}@ruc.edu.cn

ABSTRACT

Graph unlearning has emerged as a pivotal research area for ensuring privacy
protection, given the widespread adoption of Graph Neural Networks (GNNs)
in applications involving sensitive user data. Among existing studies, certified
graph unlearning is distinguished by providing robust privacy guarantees. However,
current certified graph unlearning methods are impractical for large-scale graphs
because they necessitate the costly re-computation of graph propagation for each
unlearning request. Although numerous scalable techniques have been developed
to accelerate graph propagation for GNNs, their integration into certified graph
unlearning remains uncertain as these scalable approaches introduce approximation
errors into node embeddings. In contrast, certified graph unlearning demands
bounded model error on exact node embeddings to maintain its certified guarantee.
To address this challenge, we present ScaleGUN, the first approach to scale cer-
tified graph unlearning to billion-edge graphs. ScaleGUN integrates the approx-
imate graph propagation technique into certified graph unlearning, offering cer-
tified guarantees for three unlearning scenarios: node feature, edge, and node
unlearning. Extensive experiments on real-world datasets demonstrate the effi-
ciency and unlearning efficacy of ScaleGUN. Remarkably, ScaleGUN accom-
plishes (ϵ, δ) = (1, 10−4) certified unlearning on the billion-edge graph ogbn-
papers100M in 20 seconds for a 5,000 random edge removal request – of which
only 5 seconds are required for updating the node embeddings – compared to 1.91
hours for retraining and 1.89 hours for re-propagation. Our code is available at
https://github.com/luyi256/ScaleGUN.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been widely adopted in various applications that involve
sensitive user data, such as recommender systems (He et al., 2020), online social networks (Qiu
et al., 2018), and financial networks (Weber et al., 2019). With the increasing demands for privacy
protection, recent regulations have been established to ensure “the right to be forgotten” of users (Dang,
2021). Advances in privacy protection have led to the emergence of graph unlearning (Said et al.,
2023), which aims to remove certain user data from trained GNNs. A straightforward approach is to
retrain the model from scratch without the data to remove. However, retraining incurs substantial
computation costs, rendering it impractical for frequent removal requests. Consequently, various
graph unlearning methods attempt to enhance efficiency while maintaining performance and privacy
protection comparable to retraining. Among them, certified graph unlearning (Chien et al., 2022a)
has garnered increasing attention due to its solid theoretical guarantees for privacy protection.

To achieve certified graph unlearning, an unlearning mechanism must be proved to ensure that the
unlearned model is approximately equivalent to the retrained model with respect to their probability
distributions. Specifically, certified unlearning is guaranteed if the gradient residual norm of the loss
function, ∥L(w−,D′)∥, is bounded for the unlearned model w− and the updated dataset D′ post-
unlearning (Guo et al., 2019). This can be accomplished by introducing noise perturbation into the
loss function, thereby rendering the unlearned and retrained models approximately indistinguishable
in their probability distributions. Intuitively, the gradient residual norm measures the model error
of the unlearned model, representing the discrepancy between the unlearned and retrained model.

1

https://github.com/luyi256/ScaleGUN

When the model error is limited in a certain bound relative to the noise level, the noise can effectively
mask the error, thereby ensuring certified guarantees. Thus, previous studies attempt to achieve
certified graph unlearning by perturbing the loss and subsequently deriving the gradient residual norm
bound by non-trivial theoretical analysis. CGU (Chien et al., 2022a) takes the first step to achieve
certified graph unlearning on the SGC (Wu et al., 2019) model and CEU Wu et al. (2023b) further
extends this work to batch edge unlearning. To satisfy the requirements of certified unlearning, the
aforementioned studies typically re-compute graph propagation, such as (D− 1

2AD− 1
2)2X in a 2-hop

SGC, and subsequently perform a single Newton update step on the model parameters. This approach
demonstrates substantial efficiency gains compared to retraining on small graphs.

Motivations. However, we observe that the existing certified graph unlearning methods struggle to
scale to large graphs by conducting evaluations on ogbn-papers100M dataset (Hu et al., 2020), which
comprises 111M nodes and 1.6B edges. Figure 1 (a) shows the costs of existing unlearning methods
when removing 5,000 random edges with a (ϵ, δ) = (1, 10−4) certified guarantee. Re-computing
graph propagation for a 2-hop SGC model requires over 6,000 seconds while retraining the SGC
model after graph propagation takes less than 80 seconds. Furthermore, by excluding the propagation
cost, unlearning can be finished in under 20 seconds via a single update step of model parameters.

Propagation Retrain
Unlearning100

101

102

103

104

Ti
m

e
(s

)

Existing Unlearning Methods

(a) Propagation
Unlearning100

101

102

103

104

Ti
m

e
(s

)

ScaleGUN

(b)Figure 1: Time costs per 5,000-random-edge batch
removal for existing unlearning methods v.s. Scale-
GUN on ogbn-papers100M (2-hop SGC model).

Since existing methods require re-propagation
for each unlearning request, addressing one such
request demands requires about 6,000 seconds,
whose cost is expensive and almost comparable
to retraining. The high cost of existing solutions
contradicts the objective of unlearning, implying
that reducing propagation costs is imperative to
scale certified graph unlearning to large graphs.

Intuitively, scalable techniques developed for
graph learning (Chiang et al., 2019; Zeng et al.,
2019) can be utilized to accelerate the propaga-
tion process in certified graph unlearning. How-
ever, the existing scalable approaches introduce approximation error into the node embeddings,
i.e., leverage an approximate dataset D̂′ rather than the exact D′. Conversely, deriving a certified
guarantee for unlearning requires bounding the model error, the gradient residual norm of the loss
function ∥L(w−,D′)∥ on the exact D′. This discrepancy leaves the impact of approximation error
on the model error of unlearning unclear, making it uncertain whether existing scalable approaches
can be directly integrated into certified graph unlearning.

Contributions. In this study, we address the research question: How can we integrate existing
scalable techniques into certified graph unlearning to improve scalability while maintaining certified
guarantees? We verify the feasibility of this integration and propose ScaleGUN, the first approach
for Scalable and certifiable Graph UNlearning, ensuring both efficiency and privacy guarantees for
billion-edge graphs. Our main contributions are as follows.

• Uncovering the impact of approximation error on certified guarantees. We integrate the approxi-
mate propagation technique from decoupled models (Zhang et al., 2016; Zheng et al., 2022) into
certified graph unlearning and derive theoretical guarantees for three graph unlearning scenarios:
node feature, edge, and node unlearning. By non-trivial theoretical analysis, we reveal that the
approximation error only marginally increases the model error of unlearning, while still ensuring
that the total model error remains bounded. Therefore, the total model error can also be masked by
noise perturbation, ensuring the certified unlearning guarantee.

• Lazy local propagation framework for Generalized PageRank. Existing approximate propagation
techniques for dynamic Personalized PageRank cannot be applied to commonly used models
in certified graph unlearning, such as SGC. To address the gap, we extend these techniques to
Generalized PageRank, facilitating efficient propagation for layered propagation schemes.

• Empirical studies. Extensive experiments demonstrate that ScaleGUN achieves superior perfor-
mance, efficiency, and privacy protection trade-offs on large graphs. Specifically, ScaleGUN
takes only 5 seconds to update embeddings and 20 seconds in total to execute the aforementioned
unlearning request on ogbn-papers100M, as shown in Figure 1. Additionally, we study the impact

2

of approximation error on certified unlearning by analyzing the approximate propagation parameter
rmax. The results reveal that the approximation error can be controlled by rmax to simultaneously
achieve impressive model performance and unlearning efficiency.

2 PRELIMINARIES

Notation. We consider an undirected graph G = (V, E) with node set V of size n and edge set E of
size m. We denote the size of the training set as nt. Each node is associated with an F -dimensional
feature vector x, and the feature matrix is denoted by X ∈ Rn×F . A and D are the adjacency
matrix and the diagonal degree matrix of G with self-loops, respectively. N (u) represents the
neighbors of node u. Let A be a (randomized) learning algorithm that trains on graph-structured data
D = (X,Y,A) ∈ X , where Y are the labels of the training nodes and X represents the space of
possible datasets. A outputs a model h ∈ H, whereH is the hypothesis set, that is, A : {D} → H.
Suppose that D′ is the new graph dataset resulting from a desired removal. An unlearning method
M applied to A(D) will output a new model h ∈ H according to the unlearning request, that is
M(A(D),D,D′)→ H. We add a hat to a variable to denote the approximate version of it, e.g., Ẑ is
the approximation of the embedding matrix Z. For simplicity, we denote the data as D̂ to indicate
that Ẑ takes the place of Z during the learning and unlearning process. We add a prime to a variable
to denote the variable after the removal, e.g., D′ is the new dataset post-unlearning.

Certified removal. Guo et al. (2019) define certified removal for unstructured data as follows.
Given ϵ, δ > 0, the original dataset D, a removal request resulting in D′, a removal mechanismM
guarantees (ϵ, δ)-certified removal for a learning algorithm A if ∀T ⊆ H,D ⊆ X ,

P(M(A(D),D,D′) ∈ T) ≤ eϵP(A(D′) ∈ T) + δ, and
P(A(D′) ∈ T) ≤ eϵP(M(A(D),D,D′) ∈ T) + δ.

This definition states the likelihood ratio between the retrained model on D′ and the unlearned
model via M is approximately equivalent in terms of their probability distributions. Guo et al.
(2019) also introduced a certified unlearning mechanism for linear models trained on unstructured
data. Consider A trained on D = {(x1, y1), · · · , (xn, yn)} aiming to minimize the empirical risk
L(w;D) =

∑n
i=1 l

(
w⊤xi, yi

)
+ λn

2 ∥w∥
2
2, where l is a convex loss function that is differentiable

everywhere. Let w⋆ = A(D) be the unique optimum such that∇L(w⋆,D) = 0. Guo et al. propose
the Newton udpate removal mechanism: w− = w⋆ +H−1

w⋆∆, where ∆ = λw⋆ +∇l((w⋆)⊤x, y)
when (x, y) is removed, and Hw⋆ is the Hessian matrix of L(·,D′) at w⋆. Furthermore, to mask
the direction of the gradient residual ∇L(w−,D′), they introduce a perturbation in the empirical
risk: Lb(w,D) = L(w,D) + b⊤w, where b ∈ RF is a random vector sampled from a specific
distribution. Then, one can secure a certified guarantee by using the following theorem:
Theorem 2.1 (Theorem 3 in (Guo et al., 2019)). Let A be the learning algorithm that returns the
unique optimum of the loss Lb(w;D). Suppose that a removal mechanism M returns w− with
∥∇L (w−;D′)∥2 ≤ ϵ′ for some computable bound ϵ′ > 0. If b ∼ N (0, cϵ′/ϵ)

d with c > 0, thenM
guarantees (ϵ, δ)-certified removal for A with δ = 1.5 · e−c2/2.

Certified graph unlearning. CGU (Chien et al., 2022a) generalizes the certified removal mechanism
to graph-structured data on SGC and the Generalized PageRank extensions. The empirical risk is
modified to L(w;D) =

∑nt

i=1 l
(
e⊤i Zw, e⊤i Y

)
+ λnt

2 ∥w∥
2
2, where e⊤i Z = e⊤i (D

−1A)kX, e⊤i Y is
the embedding vector and the label of node i, respectively, and nt denotes the number of training nodes.
Removing a node alters its neighbors’ embeddings, consequently affecting their loss values. Therefore,
CGU generalizes the mechanism in (Guo et al., 2019) by revising ∆ as ∇L(w⋆,D)−∇L(w⋆,D′).
If no graph structure is present, implying Z is independent of the graph structure, CGU aligns with
that of (Guo et al., 2019). Based on the modifications, CGU derives the certified unlearning guarantee
for three types of removal requests: node feature, edge, and node unlearning.

Approximate dynamic PPR propagation techniques via Forward Push. Forward Push (Andersen
et al., 2006; Yang et al., 2024) is a canonical technique designed to accelerate graph propagation
computations for decoupled models (Wang et al., 2021; Chen et al., 2020). The technique is a
localized version of cumulative power iteration, performing one push operation for a single node
at a time. Take Forward Push for z = Pℓx and P = AD−1 as an example, where x is the graph

3

signal vector and ℓ is the number of propagation steps. Forward Push maintains a reserve vector
q(ℓ) and a residue vector r(ℓ) for each level ℓ. For any node u ∈ V , q(ℓ)(u) represents the current
estimation of (Pℓx)(u), and r(ℓ)(u) holds the residual mass to be distributed to subsequent levels.
When r(ℓ)(u) exceeds a predefined threshold rmax, it is added to q(ℓ)(u) and distributed to the
residues of u’s neighbors in the next level, i.e., r(ℓ+1)(v) is increased by r(ℓ)(u)/d(u) for v ∈ N (u).
After that, r(ℓ)(u) is set to 0. Ignoring small residues that contribute little to the estimate, Forward
Push achieve a balance between estimation error and efficiency. Several dynamic PPR algorithms
have been proposed to solve PPR-based propagation in evolving graphs (Zhang et al., 2016; Guo
et al., 2021). We focus on InstantGNN (Zheng et al., 2022) as the lazy local propagation framework
in our ScaleGUN draws inspiration from it. Specifically, InstantGNN observed that the invariant
property π̂ + αr = αx + (1 − α)Pπ̂ holds during the propagation process for the propagation
scheme π =

∑∞
ℓ=0 α(1− α)ℓPℓx. Upon an edge arrival or removal, this invariant is disrupted due

to the revised P or x. InstantGNN updates the residue vector r for affected nodes to maintain the
invariant, then applies Forward Push to meet the error requirement. Since only a few nodes are
affected by one edge change, the updates are local and efficient.

3 LAZY LOCAL PROPAGATION

This section introduces our lazy local propagation framework that generates approximate embeddings
with a bounded L2-error. To effectively capture the propagation scheme prevalent in current GNN
models and align with the existing graph unlearning methods, we adopt the Generalized PageRank

(GPR) approach (Li et al., 2019) as the propagation scheme, Z =
∑L

ℓ=0 wℓ

(
D− 1

2AD− 1
2

)ℓ
X,

where wℓ is the weight of the ℓ-th order propagation matrix and
∑L

ℓ=0 |wℓ| ≤ 1. Note that this
propagation scheme differs from that of CGU (Chien et al., 2022a), which uses an asymmetric
normalized matrix P = D−1A and fixes wℓ = 1/L. We introduce the initial propagation method for
a signal vector x and the corresponding update method. The approximate embedding matrix Ẑ can
be obtained by parallel adopting the method for each signal vector and putting the results together.
Details and pseudo-codes of our propagation framework are provided in Appendix D.
Remark. The lazy local propagation framework draws inspiration from the dynamic PPR method
of InstantGNN (Zheng et al., 2022) and extends it to the GPR propagation scheme. To the best of
our knowledge, our framework is the first to achieve efficient embeddings update for the layered
propagation scheme in evolving graphs, making it readily applicable to various models, such as
SGC, GBP (Chen et al., 2020), and GDC (Gasteiger et al., 2019). Utilizing the GPR scheme also
enhances the generalizability of ScaleGUN, allowing one to replace our propagation framework with
dynamic PPR methods to achieve certified unlearning for PPR-based GNNs. Note that InstantGNN
cannot be directly applied to certified unlearning because the impact of approximation on the certified
unlearning guarantees has not been well studied. This paper’s main contribution is addressing this
gap. We establish certified guarantee for GNNs that use approximate embeddings, as detailed in
Section 4. The differences between our propagation framework and existing propagation methods are
further detailed in Appendix D.1.

For the initial propagation, we adopt Forward Push with P = AD−1, drawing from the observation
that (D− 1

2AD− 1
2)ℓ = D− 1

2 (AD−1)ℓD
1
2 . Initially, we normalize x to ensure

∥∥∥D 1
2x
∥∥∥
1
≤ 1, and

set the residue vector r(0) = D
1
2x. Applying Forward Push, we derive ẑ =

∑L
ℓ=0 wℓD

− 1
2 q(ℓ) as

the approximation of z =
∑L

ℓ=0 wℓ

(
D− 1

2AD− 1
2

)ℓ
x. Any non-zero r(ℓ) holds the weight mass

not yet passed on to subsequent levels, leading to the approximation error between ẑ and z. During
the propagation process, it holds that

z =

L∑
ℓ=0

wℓD
− 1

2

(
q(ℓ) +

ℓ∑
t=0

(AD−1)ℓ−tr(t)

)
. (1)

By examining
∑L

ℓ=0 wℓD
− 1

2

∑ℓ
t=0(AD−1)ℓ−tr(t), we establish the error bound of ẑ as follows.

Lemma 3.1. Given graph G with n nodes and the threshold rmax, the approximate embedding ẑ for
signal vector x satisfies that ∥ẑ− z∥2 ≤

√
nLrmax.

4

Inspired by the update method for the PPR-based propagation methods on dynamic graphs (Zheng
et al., 2022), we identify the invariant property for the GPR scheme as follows.
Lemma 3.2. For each signal vector x, the reserve vectors {q(ℓ)} and the residue vectors {r(ℓ)}
satisfy the following invariant property for all u ∈ V during the propagation process:

q(ℓ)(u) + r(ℓ)(u) = D(u)
1
2x(u), ℓ = 0

q(ℓ)(u) + r(ℓ)(u) =
∑

t∈N (u)

q(ℓ−1)(t)

d(t)
, 0 < ℓ ≤ L

(2)

Upon a removal request, we adjust {r(ℓ)} locally for the affected nodes to maintain the invariant
property. Consider an edge removal scenario, for example, where edge (u, v) is targeted for removal.
Only node u, node v, and their neighbors fail to meet Equation (2) due to the altered degrees of u and
v. Take the modification for node u as an example. For level 0, we update r(0)(u) reflecting changes
in D

1
2x. For subsequent levels, r(ℓ)(u) is updated to reflect that the right side of u’s equations

exclude q(ℓ−1)(v)
d(v) . For u’s neighbors, their residues are updated accordingly, since one term on the

right, q(ℓ−1)(u)
d(u) , shifts to q(ℓ−1)(u)

d(u)−1 . Post-adjustment, the invariant property is preserved across all
nodes. Then we invoke Forward Push to secure the error bound and acquire the updated ẑ. Removing
a node can be treated as multiple edge removals by eliminating all edges connected to the node.
Moreover, feature removal for node u can be efficiently executed by setting r(0)(u) as−q(0)(u). The
following theorem illustrates the average cost for each removal request.
Theorem 3.3 (Average Cost). For a sequence of m removal requests that remove all edges of the
graph, the amortized cost per edge removal is O

(
L2d

)
. For a sequence of K random edge removals,

the expected cost per edge removal is O
(
L2d

)
.

Note that the propagation step L and the average degree d are both typically a small constant in
practice. L is commonly set to 2 in GCN (Kipf & Welling, 2016), SGC, GAT (Velickovic et al.,
2017). Many real-world networks are reported to be scale-free, characterized by a small average
degree (Barabási, 2013). For instance, the citation network ogbn-arxiv and ogbn-papers100M exhibit
average degrees of 6 and 14, respectively. Consequently, this setup generally allows for constant time
complexity for each removal request.

4 SCALABLE AND CERTIFIABLE UNLEARNING MECHANISM

This section presents the certified graph unlearning mechanism of ScaleGUN based on the approxi-
mate embeddings derived from our lazy local propagation framework. Following existing works, we
first study linear models with a strongly convex loss function and focus on binary node classifica-
tion problems. We define the empirical risk as L(w,D) =

∑
i∈[nt]

(
l(e⊤i Ẑw, e⊤i Y) + λ

2 ∥w∥
2
)
,

where l is a convex loss that is differentiable everywhere, e⊤i Ẑ and e⊤i Y represents the approximate
embedding vector and the label of node i, respectively. Without loss of generality, we assume that
the training set contains the first nt nodes. Suppose that w∗ is the unique optimum of the original
graph and an unlearning request results in a new graph D′. Our unlearning approach produces
a new model w− as follows: w− = w⋆ + Ĥ−1

w⋆∆, where ∆ = ∇L(w⋆, D̂) − ∇L(w⋆, D̂′) and
Ĥw⋆ is the Hessian matrix of L(·, D̂′) at w⋆. We also introduce a perturbation in the loss function
following (Guo et al., 2019) to hide information: Lb(w,D) = L(w,D) + b⊤w, where b ∈ RF is a
noise vector sampled from a specific distribution.

Compared to the unlearning mechanism, w− = w⋆ +H−1
w⋆ (∇L(w⋆,D)−∇L(w⋆,D′)), proposed

by Chien et al. (2022a), our primary distinction lies in the approximation of embeddings. This also
poses the main theoretical challenges in proving certified guarantee. According to Theorem 2.1, an
unlearning mechanism can ensure (ϵ, δ)-certified graph unlearning if ∥∇L(w−,D′)∥ is bounded.
Bounding ∥∇L(w−,D′)∥ is the main challenge to develop a certified unlearning mechanism. One of
the leading contributions of (Guo et al., 2019; Chien et al., 2022b) is to establish the bounds for their
proposed mechanisms. In the following, we elaborate on the bounds of ∥∇L(w−,D′)∥ of ScaleGUN
under three graph unlearning scenarios: node feature, edge, and node unlearning. Before that, we
make the following assumptions.

5

Assumption 4.1. For any dataset D ∈ X , i ∈ [n] and w ∈ RF : (1)
∥∥∇l(e⊤i Zw, e⊤i Y)

∥∥ ≤ c; (2) l′

is c1-bounded; (3) l′ is γ1-Lipschitz; (4) l′′ is γ2-Lipschitz; (5)
∥∥e⊤i X∥∥ ≤ 1.

Note that these assumptions are also needed for (Chien et al., 2022a). Assumptions (1)(3)(5) can be
avoided when working with the data-dependent bound in Theorem 4.5. We first focus on a single
instance unlearning and extend to multiple unlearning requests in Section 4.3.

4.1 NODE FEATURE UNLEARNING

We follow the definitions of all three graph unlearning scenarios in (Chien et al., 2022a). In the node
feature unlearning case, the feature and label of a node are removed, resulting in D′ = (X′,Y′,A),
where X′ and Y′ is identical to X and Y except the row of the removed node is zero. Without loss
of generality, we assume that the removed node is node u in the training set. Our conclusion remains
valid even when the removed node is not included in the training set.
Theorem 4.2 (Worst-case bound of node feature unlearning). Suppose that Assumption 4.1 holds
and the feature of node u is to be unlearned. If ∀j ∈ [F],

∥∥∥Ẑej − Zej

∥∥∥ ≤ ϵ1, we have∥∥∇L(w−,D′)
∥∥ ≤ (cγ1

λ
F + c1

√
F (nt − 1)

)(
ϵ1 +

8γ1F

λ(nt − 1)
·
√
d(u)

)
.

The feature dimension F affects the outcome as the analysis is conducted on one dimension of
the embedding Zj rather than on e⊤i Z. In real-world datasets, F is typically a small constant.
Note that ϵ1 is exactly

√
nLrmax according to Lemma 3.1. To ensure that the norm will not

escalate with the training set size nt, we typically set ϵ1 = O(1√
nt
), which implies that rmax =

O(1/
√
ntn). The bound can be viewed as comprising two components: the component resulting

from approximation,
(

cγ1

λ F + c1
√
F (nt − 1)

)
ϵ1, and the component resulting from unlearning,(

cγ1

λ F + c1
√
F (nt − 1)

)
8γ1F

λ(nt−1) ·
√
d(u). In the second component, the norm increases if the

unlearned node possesses a high degree, as removing a large-degree node’s feature impacts the
embeddings of many other nodes. This component is not affected by L, the propagation step, due to
the facts that (D− 1

2AD− 1
2)ℓ = D− 1

2 (AD−1)ℓD
1
2 and that AD−1 is left stochastic.

Analytical challenges. It is observed that ∥∇L(w−,D′)∥ originates from the exact embeddings of
D′, whereas w− is derived from approximate embeddings in ScaleGUN. Thus, the first challenge is
to establish the connection between D′ and D̂′ in ∥∇L(w−,D′)∥. To address this issue, we employ
the Minkowski inequality to adjust the norm: ∥∇L(w−,D′)∥ ≤

∥∥∥∇L(w−,D′)−∇L(w−, D̂′)
∥∥∥+∥∥∥∇L(w−, D̂′)

∥∥∥ . The first norm depicts the difference between the gradient of w− on the exact and
approximate embeddings, which is manageable through the approximation error. The second norm,∥∥∥∇L(w−, D̂′)

∥∥∥, signifies the error of w− as the minimizer of L(·, D̂′), given as∥∥∥∇L(w−, D̂′)
∥∥∥ =

∥∥∥(Ĥwη
− Ĥw⋆)Ĥ−1

w⋆∆
∥∥∥ ,

where Ĥwη is the Hessian of L(·, D̂′) at wη = w⋆ + ηĤ−1
w⋆∆ for some η ∈ [0, 1]. This introduces

the second challenge: bounding ∥∆∥. Bounding ∥∆∥ is intricate, especially for graph unlearning
scenarios. Here, ∆ represents the difference between the gradient of w∗ on pre- and post-removal
datasets, i.e., Ẑ and Ẑ′. Therefore, establishing the mathematical relationship between Z and Z′ is
the crucial point. Although prior studies have explored the bound of

∥∥e⊤i (Z− Z′)
∥∥, their interest

primarily lies in P = D−1A (Chien et al., 2022a) or 1-hop feature propagation (Wu et al., 2023b),
which cannot be generalized to our GPR propagation scheme with P = D− 1

2AD− 1
2 . We address

this challenge innovatively by taking advantage of our lazy local propagation framework.

bounding ∥∆∥ via the propagation framework. Assuming node u is the nt-th node in the training
set, for the case of feature unlearning, we have

∆ = λw⋆ +∇l(Ẑ,w⋆, nt) +
∑

i∈[nt−1]

(
∇l(Ẑ,w⋆, i)−∇l(Ẑ′,w⋆, i)

)
,

6

where l(Ẑ,w⋆, i) is short for l(e⊤i Ẑw
⋆, e⊤i Y). Creatively, we bound ∥Zej − Z′ej∥ for all j ∈ [F]

via the lazy local propagation framework. Let z = Zej and z′ = Z′ej for brevity. In our propagation
framework, right after adjusting the residues upon a removal, {q(ℓ)} remains unchanged. Moreover,
Equation (1) holds during the propagation process. Thus, we have

z− z′ =

ℓ∑
t=0

wℓ

ℓ∑
t=0

D− 1
2 (AD−1)ℓ−t

(
r(t) − r′(t)

)
.

To derive r(t) − r′(t), notice that Equation (1) is applicable across all rmax configurations. Setting
rmax = 0 to eliminate error results in r(t) becoming a zero vector. Thus, for the feature unlearning
scenario, r(0) − r′(0) is precisely −q(0)(u)eu, as only node u’s residue is modified. For t > 0,
r(t) − r′(t) are all zero vectors since these residues are not updated. This solves the second challenge.
The bounds for edge and node unlearning scenarios can be similarly derived via the lazy local
framework, significantly streamlining the proof process compared to direct analysis of Zej − Z′ej .

4.2 EDGE UNLEARNING AND NODE UNLEARNING

In the edge unlearning case, we remove an edge (u, v), resulting in D′ = (X,Y,A′), where A′ is
identical to A except that the entries for (u, v) and (v, u) are set to zero. The node feature and labels
remain unchanged. The conclusion remains valid regardless of whether u, v are in the training set.
Theorem 4.3 (Worst-case bound of edge unlearning). Suppose that Assumption 4.1 holds, and the
edge (u, v) is to be unlearned. If ∀j ∈ [F],

∥∥∥Ẑej − Zej

∥∥∥ ≤ ϵ1, we can bound ∥∇L(w−,D′)∥ by

4cγ1F

λnt
+
(cγ1

λ
F + c1

√
Fnt

)(
ϵ1 +

2γ1F

λnt
(2ϵ1 +

4√
d(u)

+
4√
d(v)

)

)
.

We observe that the worst-case bound diminishes when the two terminal nodes of the removed edge
have a large degree. This reduction occurs because the impact of removing a single edge from a node
with many edges is relatively minor.

In the node unlearning case, removing a node u results in D′ = (X′,Y′,A′), where the entries
regarding the removed node in all three matrices are set to zero. The bound can be directly inferred
from Theorem 4.3 since unlearning node u equates to eliminating all edges connected to node u. This
upper bound indicates that the norm is related to the degree of node u and that of its neighbors.
Theorem 4.4 (Worst-case bound of node unlearning). Suppose that Assumption 4.1 holds and node
u is removed. If ∀j ∈ [F],

∥∥∥Ẑej − Zej

∥∥∥ ≤ ϵ1, we can bound ∥∇L(w−,D′)∥ by

4cγ1F

λ(nt − 1)
+
(cγ1

λ
F + c1

√
F (nt − 1)

)ϵ1 +
2γ1F

λ(nt − 1)
(2ϵ1 + 4

√
d(u) +

∑
w∈N (u)

4√
d(w)

)

 .

4.3 UNLEARNING ALGORITHM

In this subsection, we introduce the unlearning procedure of ScaleGUN. More practical considerations
are deferred to Appendix B.1, including feasible loss functions and batch unlearning.

Data-dependent bound. The worst-case bounds may be loose in practice. Following the existing
certified unlearning studies (Guo et al., 2019; Chien et al., 2022a), we examined the data-dependent
norm as follows. Similar to the worst-case bounds, the data-dependent bound can also be understood
as two components: the first term 2c1

∥∥1⊤R
∥∥ incurred by the approximation error and the second

term γ2

∥∥∥Ẑ′
∥∥∥∥∥∥Ĥ−1

w⋆∆
∥∥∥∥∥∥Ẑ′Ĥ−1

w⋆∆
∥∥∥ incurred by unlearning. The second term is similar to that of

the existing works, except that it is derived from the approximate embeddings.
Theorem 4.5 (Data-dependent bound). Let R(t) ∈ Rn×F denote the residue matrix at level t, where
the j-th column R(t)ej represents the residue at level t for the j-th signal vector. Let R be defined as
the sum

∑L
t=0 R

(t). We can establish the following data-dependent bound:∥∥∇L(w−,D′)
∥∥ ≤2c1 ∥∥1⊤R

∥∥+ γ2

∥∥∥Ẑ′
∥∥∥∥∥∥Ĥ−1

w⋆∆
∥∥∥∥∥∥Ẑ′Ĥ−1

w⋆∆
∥∥∥ .

7

0 100 200 300 400 500 600 700 800
Number of removals

10−4

10−2

100

102

104

106

108

1010

Gr
ad

ie
nt

 re
sid

ua
l n

or
m

Cora - Node feature unlearning

Worst-case norm
Data-dependent norm
True norm

0 100 200 300 400 500
Number of removals

10−4

10−2

100

102

104

106

108

1010

Gr
ad

ie
nt

 re
sid

ua
l n

or
m

Cora - Edge unlearning

Worst-case norm
Data-dependent norm
True norm

0 100 200 300 400 500 600 700 800
Number of removals

10−4

10−2

100

102

104

106

108

1010

Gr
ad

ie
nt

 re
sid

ua
l n

or
m

Cora - Node unlearning

Worst-case norm
Data-dependent norm
True norm

Figure 2: Comparison of the bounds of the gradient residual: Worst-case bound (Theorem 4.2, 4.3,
4.4 for node feature, edge, node unlearning, respectively), data-dependent bound (Theorem 4.5) and
the true value on Cora dataset.

Sequential unlearning algorithm. Multiple unlearning requests can be executed sequentially. The
unlearning process is similar to the existing works (Chien et al., 2022a; Wu et al., 2023b), except that
we employ the lazy local propagation framework for the initial training and each removal. Specifically,
we select the noise standard deviation α and privacy parameter ϵ, δ, and compute the “privacy budget”.
Once the accumulated data-dependent norm exceeds the budget, we retrain the model and reset the
accumulated norm. Notably, only the component attributable to unlearning, i.e., the second term in
Theorem 4.5, needs to be accumulated. This is because the first term represents the error caused
by the current approximation error and does not depend on the previous results. We provide the
pseudo-code and illustrate more details in Appendix B.2.

5 EXPERIMENTS

In this section, we evaluate the performance of ScaleGUN on real-world datasets, including three
small graph datasets: Cora (Sen et al., 2008), Citeseer (Yang et al., 2016), and Photo (McAuley et al.,
2015); as well as three large graph datasets: ogbn-arxiv, ogbn-products, and ogbn-papers100M (Hu
et al., 2020). Consistent with prior certified unlearning research, we employ LBFGS as the optimizer
for linear models. The public splittings are used for all datasets. Unless otherwise stated, we set
L = 2, ϵ = 1, δ = 1e − 4 for all experiments, averaging results across 5 trials with random seeds.
Following (Chien et al., 2022a), wℓ is set to 1 for ℓ = 2 and 0 for other values. The propagation matrix
is set to P = D− 1

2AD− 1
2 across all the methods for fair comparison. Our benchmarks include

CGU (Chien et al., 2022a), CEU (Chen et al., 2022), and the standard retrained method. Note that
δ can be configured to 1

#edges for edge unlearning and 1
#nodes for node/feature unlearning to meet

higher privacy requirements (Chien et al., 2024; Sajadmanesh et al., 2023). The experimental results
under this setting, additional experiments and detailed configurations are available in Appendix C.

Evaluations. We evaluate the performance of ScaleGUN in terms of efficiency, model utility
(performance), and unlearning efficacy. The efficiency is measured by the average total cost per
removal and the average propagation cost per removal. The model utility is evaluated by the accuracy
of node classification. Given the lack of standardized methods for evaluating unlearning efficacy in
graphs, we utilize two attack methods to assess this efficacy. For edge unlearning, we apply the task
of forgetting adversarial data as described by (Wu et al., 2023a). For node unlearning, we employ the
Deleted Data Replay Test (DDRT) as outlined in (Cong & Mahdavi).

Bounds on the gradient residual norm. Figure 2 validates the bounds on the gradient residual
norm: the worst-case bounds, the data-dependent bounds, and the true value for all three unlearning
scenarios on the Cora dataset. For simplicity, the standard deviation α is set to 0 for the noise b. The
results demonstrate that both the worst-case bounds and the data-dependent bounds validly upper
bound the true value, and the worst-case bounds are looser than the data-dependent bounds.

Efficiency and model utility on linear models. We examine the unlearning performance of
ScaleGUN on large graph datasets here and provide the results on small graphs in Appendix C.
For large datasets, randomly selecting edges to remove is insufficient to affect model accuracy
significantly. We propose a novel approach to select a set of vulnerable edges for removal. In-
spired by Theorem 4.3, we find that edges linked to nodes with small degrees are more likely
to yield larger gradient residual norms, thus severely impacting performance. Consequently, we
randomly choose a set of low-degree nodes from the test set and then select edges that con-

8

Table 1: Test accuracy (%), total unlearning cost (s) and propagation cost (s) per batch edge removal
for linear models (large graphs).

ogbn-arxiv ogbn-products ogbn-papers100M

N Retrain CGU CEU ScaleGUN N(×103) Retrain CGU CEU ScaleGUN N(×103) Retrain ScaleGUN
0 57.83 57.84 57.84 57.84 0 56.24 56.23 56.23 56.23 0 59.99 59.72

25 57.83 57.83 57.83 57.84 1 56.23 56.22 56.22 56.22 2 59.71 59.61
50 57.82 57.83 57.83 57.83 2 56.22 56.21 56.21 56.21 4 59.55 59.30
75 57.82 57.82 57.82 57.82 3 56.21 56.21 56.21 56.20 6 59.89 59.16
100 57.81 57.82 57.82 57.82 4 56.20 56.20 56.20 56.19 8 59.46 59.18
125 57.81 57.81 57.81 57.81 5 56.19 56.19 56.19 56.19 10 59.26 59.14

Total 2.66 2.28 2.08 0.91 Total 101.90 92.37 95.79 8.76 Total 6764.31 53.51
Prop 1.73 1.68 1.68 0.70 Prop 98.48 91.24 94.63 8.35 Prop 6703.44 6.14

0 100 200 300 400 500
removed adversarial edges

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Ac
cu

ra
cy

 (%
)

Cora
Retrain
CGU
CEU
ScaleGUN

0 2000 4000 6000 8000 10000
removed adversarial edges

0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530

Ac
cu

ra
cy

 (%
)

ogbn-arxiv
Retrain
CGU
CEU
ScaleGUN

0 2000 4000 6000 8000 10000
removed adversarial edges

0.54

0.55

0.56

0.57

0.58

0.59

Ac
cu

ra
cy

 (%
)

ogbn-products
Retrain
CGU
CEU
ScaleGUN

0 1000 2000 3000 4000 5000
removed adversarial edges

0.570

0.575

0.580

0.585

0.590

0.595

Ac
cu

ra
cy

 (%
)

ogbn-papers100M
Retrain
ScaleGUN

Figure 3: Comparison of unlearning efficacy for linear models: Model accuracy v.s. the number of
removed adversarial edges.

nect these nodes to other low-degree nodes bearing identical labels. Table 1 presents the test
accuracy, average total unlearning cost, and average propagation cost for batch edge unlearn-
ing in linear models applied to large graph datasets. The results highlight ScaleGUN’s impres-
sive performance, with its advantages becoming more pronounced as the graph size increases.

Table 2: Test accuracy (%), total unlearning cost
(s) and propagation cost (s) per node feature/node
removal for linear models on ogbn-papers100M.

Feature Unlearning Node Unlearning

N(×103) Retrain ScaleGUN N(×103) Retrain ScaleGUN

0 59.99 59.95 0 59.99 59.95
2 59.99 59.66 2 59.99 59.70
4 59.99 59.66 4 59.99 59.76
6 59.99 59.66 6 59.99 59.85
8 59.99 59.66 8 59.99 59.83
10 59.99 59.45 10 60.00 59.49

Total 5400.45 42.68 Total 5201.88 54.85
Prop 5352.84 5.90 Prop 5139.09 15.49

Furthermore, Table 2 shows the node and feature
unlearning results on ogbn-papers100M, where
2000 nodes are removed at a time. The results
demonstrate that ScaleGUN achieves competi-
tive accuracy compared to the retrained model
while significantly reducing the total unlearning
and propagation costs under the node feature
and node unlearning scenarios. Notably, on the
ogbn-papers100M dataset, ScaleGUN demon-
strates a speed advantage of 1000× over retrain-
ing in terms of propagation cost under both edge
and feature unlearning scenarios.

Efficiency and model utility on deep models. ScaleGUN can also achieve superior unlearning
performance on deep models, such as decoupled models and spectral GNNs (Chien et al., 2020; He
et al., 2022), despite lacking certified guarantees. Table 3 presents ScaleGUN’s performance on
decoupled models, where 2-hop propagations followed by 2-layer Multi-Layer Perceptrons (MLPs).
We introduce perturbation B⊤W to each learnable parameter W, utilizing Adam as the optimizer.

Table 3: Test accuracy (%), total unlearning cost
(s) per batch edge removal for decoupled models.

ogbn-products ogbn-papers100M

N(×103) Retrain ScaleGUN N(×103) Retrain ScaleGUN
0 74.16 74.25 0 63.39 63.13
1 74.15 74.25 2 63.21 63.05
2 74.16 74.24 4 63.13 62.97
3 74.12 74.24 6 63.05 62.89
4 74.18 74.23 8 62.95 62.80
5 74.10 74.22 10 62.85 62.72

Total 174.23 14.19 Total 7958.83 10.49

The propagation cost is excluded as its pattern
is consistent with that in Table 1. This suggests
that ScaleGUN can be employed in shallow net-
works to achieve higher model accuracy when
certified guarantee are not required. Further-
more, spectral GNNs are a significant subset of
GNNs rooted in spectral graph theory, known
for their superior expressive power. We also ap-
ply ScaleGUN on the spectral GNN model to
demonstrate its versatility in Appendix C.

Edge unlearning efficacy. We adopt the task of forgetting adversarial data to evaluate ScaleGUN’s
edge unlearning efficacy. First, we introduce the measurement for edge unlearning efficacy. Specifi-
cally, we introduce adversarial edges into the graph, ensuring the terminal nodes bear different labels.
These adversarial edges are used to deceive the model into making incorrect predictions, diminishing
its performance. The objective of unlearning is to delete these adversarial edges and recuperate

9

Table 4: Deleted Data Replay Test: The ratio of incorrectly labeled nodes, rd, ra, after unlearning.

Model
rd = |{i∈Vd|ŷi=c}|

|Vd|
(%, ↓) ra = |{i∈V|ŷi=c}|

|V| (%, ↓)

Cora ogbn-arxiv ogbn-products Cora ogbn-arxiv ogbn-products

Origin 100 90.72 100 52.13 1.01 45.59
Retrain 0 0 0 0 0 0
CGU 0 0 0 0.09 0 0
ScaleGUN 0 0 0 0.08 0 0

the model’s performance. With the removal of more adversarial edges, the accuracy of unlearning
methods is expected to rise, following the trend of retraining. For Cora, we randomly selected 500
edges connecting two distinct labeled terminal nodes to serve as adversarial edges. However, this
straightforward method proves inadequate in affecting model accuracy for large graphs. Consequently,
we adopt a more refined approach tailored for large graphs, which is detailed in Appendix C. Figure 3
illustrates how the model accuracy varies as the number of removed adversarial edges increases. The
results affirm that CGU, CEU, and ScaleGUN exhibit effectiveness in edge unlearning.

Node unlearning efficacy. To measure the node unlearning efficacy, we conduct Deleted Data Replay
Test on Cora, ogbn-arxiv, and ogbn-products for linear models in Table 4. First, we choose a set of
nodes Vd to be unlearned from the training set and add 100-dimensional binary features to the original
node features. For nodes in Vd, these additional features are set to 1; for other nodes, they are set to 0.
The labels of nodes in Vd are assigned to a new class c. An effective unlearning method is expected
not to predict the unlearned nodes as class c after unlearning Vd, meaning that ŷi ̸= c for i ∈ Vd. We
report the ratio of incorrectly labeled nodes rd = |{i∈Vd|ŷi=c}|

|Vd| in the original model (which does
not unlearn any nodes) and target models after unlearning. We set |Vd| = 100, 125, 50000 for Cora,
ogbn-arxiv, and ogbn-products, respectively. We also report ra = |{i∈V|ŷi=c}|

|V| to assess whether
the impact of the unlearned nodes is completely removed from the graph. The results show that
ScaleGUN successfully removes the impact of the unlearned nodes, with only a slight discrepancy
compared to retraining. Moreover, we also evaluate unlearning efficacy by Membership Inference
Attack (MIA), however, as argued in (Chien et al., 2022a), MIA is not suitable to evaluate graph
unlearning efficacy. We defer the MIA results to Appendix C.

Effects of rmax. ScaleGUN introduces the parameter rmax to manage the approximation er-
ror. To investigate the impact of rmax, we conduct experiments on the ogbn-arxiv dataset, re-
moving 100 random edges, one at a time. Table 5 displays the initial model accuracy before
any removal, total unlearning cost, propagation cost per edge removal, and average number of
retraining throughout the unlearning process. Decreasing rmax improves model accuracy and
reduces the approximation error, leading to fewer retraining times and lower unlearning costs.

Table 5: Initial test accuracy, total unlearning cost
and propagation cost per edge removal by varying
rmax on ogbn-arxiv with linear model.

rmax 1e-5 1e-7 1e-9 5e-10 1e-10 1e-15

Acc (%) 55.23 57.84 57.84 57.84 57.84 57.84
Total (s) 3.30 3.60 3.31 1.81 0.92 0.93
Prop (s) 0.72 0.76 0.75 0.71 0.77 0.77
#Retrain 100 100 85.33 56.67 0 0

Beyond a certain threshold, the model accuracy
stabilizes, and the unlearning cost is minimized.
Further reduction in rmax is unnecessary as it
would increase the initial computational cost.
Notably, the propagation cost remains stable,
consistent with Theorem 3.3, which indicates
that the average propagation cost is indepen-
dent of rmax. Table 5 suggests that selecting an
appropriate rmax can achieve both high model
utility and efficient unlearning.

6 CONCLUSION

This paper introduces ScaleGUN, the first certified graph unlearning mechanism that scales to
billion-edge graphs. We introduce the approximate propagation technique from decoupled models
into certified unlearning and reveal the impact of approximation error on the certified unlearning
guarantees by non-trivial theoretical analysis. Certified guarantees are established for all three graph
unlearning scenarios: node feature, edge, and node unlearning. Empirical studies of ScaleGUN on
real-world datasets showcase its efficiency, model utility, and unlearning efficacy in graph unlearning.

10

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 475–486.
IEEE, 2006.

Albert-László Barabási. Network science. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 371(1987):20120375, 2013.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk
minimization. Journal of Machine Learning Research, 12(3), 2011.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.
Graph unlearning. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 499–513, 2022.

Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen. Scalable
graph neural networks via bidirectional propagation. Advances in neural information processing
systems, 33:14556–14566, 2020.

Jiali Cheng, George Dasoulas, Huan He, Chirag Agarwal, and Marinka Zitnik. Gnndelete: A general
strategy for unlearning in graph neural networks. arXiv preprint arXiv:2302.13406, 2023.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257–266,
2019.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Eli Chien, Chao Pan, and Olgica Milenkovic. Certified graph unlearning. arXiv preprint
arXiv:2206.09140, 2022a.

Eli Chien, Chao Pan, and Olgica Milenkovic. Efficient model updates for approximate unlearning of
graph-structured data. In The Eleventh International Conference on Learning Representations,
2022b.

Eli Chien, Wei-Ning Chen, Chao Pan, Pan Li, Ayfer Ozgur, and Olgica Milenkovic. Differentially
private decoupled graph convolutions for multigranular topology protection. Advances in Neural
Information Processing Systems, 36, 2024.

Weilin Cong and Mehrdad Mahdavi. Grapheditor: An efficient graph representation learning and
unlearning approach.

Weilin Cong and Mehrdad Mahdavi. Efficiently forgetting what you have learned in graph represen-
tation learning via projection. In International Conference on Artificial Intelligence and Statistics,
pp. 6674–6703. PMLR, 2023.

Quang-Vinh Dang. Right to be forgotten in the age of machine learning. In Advances in Digital
Science: ICADS 2021, pp. 403–411. Springer, 2021.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

11

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030, 2019.

Xingzhi Guo, Baojian Zhou, and Steven Skiena. Subset node representation learning over large
dynamic graphs. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, pp. 516–526, 2021.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. Advances in neural information processing systems, 35:
7264–7276, 2022.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Masayuki Karasuyama and Ichiro Takeuchi. Multiple incremental decremental learning of support
vector machines. IEEE Transactions on Neural Networks, 21(7):1048–1059, 2010.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Pan Li, I Chien, and Olgica Milenkovic. Optimizing generalized pagerank methods for seed-expansion
community detection. Advances in Neural Information Processing Systems, 32, 2019.

Xunkai Li, Yulin Zhao, Zhengyu Wu, Wentao Zhang, Rong-Hua Li, and Guoren Wang. Towards
effective and general graph unlearning via mutual evolution. arXiv preprint arXiv:2401.11760,
2024.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015.

Iyiola E Olatunji, Wolfgang Nejdl, and Megha Khosla. Membership inference attack on graph
neural networks. In 2021 Third IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), pp. 11–20. IEEE, 2021.

Chao Pan, Eli Chien, and Olgica Milenkovic. Unlearning graph classifiers with limited data resources.
In Proceedings of the ACM Web Conference 2023, pp. 716–726, 2023.

Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2110–2119, 2018.

Anwar Said, Tyler Derr, Mudassir Shabbir, Waseem Abbas, and Xenofon Koutsoukos. A survey of
graph unlearning. arXiv preprint arXiv:2310.02164, 2023.

Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez. {GAP}:
Differentially private graph neural networks with aggregation perturbation. In 32nd USENIX
Security Symposium (USENIX Security 23), pp. 3223–3240, 2023.

12

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Cheng-Long Wang, Mengdi Huai, and Di Wang. Inductive graph unlearning. arXiv preprint
arXiv:2304.03093, 2023.

Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen.
Approximate graph propagation. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 1686–1696, 2021.

Yifei Wang and Mert Pilanci. Polynomial-time solutions for relu network training: A complexity
classification via max-cut and zonotopes. CoRR, abs/2311.10972, 2023. doi: 10.48550/ARXIV.
2311.10972. URL https://doi.org/10.48550/arXiv.2311.10972.

Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei, Tom Robin-
son, and Charles E Leiserson. Anti-money laundering in bitcoin: Experimenting with graph
convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591, 2019.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 6861–6871. PMLR, 2019.

Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan He. Gif: A general
graph unlearning strategy via influence function. In Proceedings of the ACM Web Conference
2023, pp. 651–661, 2023a.

Kun Wu, Jie Shen, Yue Ning, Ting Wang, and Wendy Hui Wang. Certified edge unlearning for graph
neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 2606–2617, 2023b.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018.

Mingji Yang, Hanzhi Wang, Zhewei Wei, Sibo Wang, and Ji-Rong Wen. Efficient algorithms for
personalized pagerank computation: A survey. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Hongyang Zhang, Peter Lofgren, and Ashish Goel. Approximate personalized pagerank on dynamic
graphs. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1315–1324, 2016.

Yanping Zheng, Hanzhi Wang, Zhewei Wei, Jiajun Liu, and Sibo Wang. Instant graph neural networks
for dynamic graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 2605–2615, 2022.

13

https://doi.org/10.48550/arXiv.2311.10972

A OTHER RELATED WORKS

Machine unlearning, first introduced by Cao & Yang (2015), aims to eliminate the impact of selected
training data from trained models to enhance privacy protection.

Exact unlearning. Exact unlearning seeks to generate a model that mirrors the performance of a
model retrained from scratch. The straightforward method is to retrain the model upon a data removal
request, which is often deemed impractical due to high computational and temporal costs. To bypass
the burdensome retraining process, several innovative solutions have been proposed. Ginart et al.
(2019) focused on k-means clustering unlearning, while Karasuyama & Takeuchi (2010) addressed
the unlearning problem for support vector machines. Bourtoule et al. (2021) proposed the SISA
(sharded, isolated, sliced, and aggregated) method, which partitions the training data into shards and
trains on each shard separately. Upon a removal request, only the affected shards need to be retrained,
thus enhancing the performance significantly. GraphEraser (Chen et al., 2022) extended the SISA
approach to graph-structured data. Projector and GraphEditor (Cong & Mahdavi; 2023) address exact
unlearning for linear GNNs with Ridge regression as their objective.

Approximate unlearning. Approximate unlearning, on the other hand, introduces probabilistic
or heuristic methods to reduce unlearning costs further. Within this realm, certified unlearning,
the primary subject of this study, stands as a subclass of approximate methods distinguished by its
probabilistic assurances. Besides the certified unlearning works previously mentioned, Pan et al.
(2023) extended the certified unlearning to graph scattering transform. GIF (Wu et al., 2023a) de-
veloped graph influence function based on influence function for unstructured data (Koh & Liang,
2017). Golatkar et al. (2020) proposed heuristic-based selective forgetting in deep networks. GN-
NDelete (Cheng et al., 2023) introduced a novel layer-wise operator for optimizing deleted edge
consistency and neighborhood influence in graph unlearning. Concurrently, Li et al. (2024) achieved
effective and general graph unlearning through a mutual evolution design, and Wang et al. (2023)
proposed the first general framework for addressing the inductive graph unlearning problem.

Differentially Privacy v.s. Certified unlearning. Differentially Privacy (DP) aims to ensure that an
adversary cannot infer whether the model was trained on the original dataset or the dataset with any
single data sample removed, based on the model’s output. Certified unlearning aims to remove the
impact of the specific data sample(s) so that the model behaves as if the sample was never included.
Thus, a DP model inherently provides certified unlearning for any single data sample. However, most
DP models suffer from performance degradation even for loose privacy constraints (Abadi et al.,
2016; Chaudhuri et al., 2011). Certified unlearning can balance model utility and computational
cost, presenting an alternative to retraining and DP (Chien et al., 2022b). This also explains the
growing interest in certified unlearning as privacy protection demands rise. Additionally, there are
some nuances between DP and certified unlearning. For example, DP does not obscure the total
dataset size and the number of deletions any given model instance has processed, but this should not
be leaked in certified unlearning (Ginart et al., 2019).

B DETAILS OF CERTIFIABLE UNLEARNING MECHANISM

B.1 PRACTICAL ASPECTS

Least-squares and logistic regression on graphs. Similar to (Chien et al., 2022a), our un-
learning mechanism can achieve certifiable unlearning with least-squares and binary logistic
regression. ScaleGUN performs exact unlearning for least-squares since the Hessian of loss
function is independent of w. For binary logistic regression, we define the empirical risk as
l(e⊤i Ẑw, e⊤i Yi) = − log(σ(e⊤i Yie

⊤
i Ẑw)), where σ denotes the sigmoid function. As shown

in (Guo et al., 2019; Chien et al., 2022a), Assumption 4.1 holds with c = 1, γ1 = γ2 = 1/4, c1 = 1
for logistic regression. Following (Chien et al., 2022a), ScaleGUN can adapt the “one-versus-all
other classes” strategy for multiclass logistic regression.

Batch unlearning. In the batch unlearning scenario, multiple instances may be removed at a time. In
the worst-case bounds of the gradient residual norm, the component attributable to approximation
error remains unchanged across three kinds of unlearning requests and for any number of unlearning
instances. This stability is due to our lazy local propagation framework, which ensures the approxima-

14

Algorithm 1: ScaleGUN
Input: Graph data D = (X,Y,A), sequence of removal requests R = {R1, · · · , Rk}, loss

function l, parameters L, {wℓ}, rmax, α, γ2, ϵ, δ

1 Compute the embedding matrix Ẑ by Algorithm 2 with initialized {q(ℓ)} and {r(ℓ)} ;
2 w← the model trained on the training set of D̂ with the approximate embeddings Ẑ;
3 Accumulated unlearning error β ← 0;
4 for Ri ∈ R do
5 Ẑ′,R← the embedding matrix updated by the lazy local propagation framework and the

corresponding residue matrix according to the removal request Ri;
6 D̂′ ← the updated dataset according to Ri;
7 ∆← ∇L(w, D̂)− L(w, D̂′);
8 Ĥw ← ∇2L(w, D̂′);

9 β ← β + γ2

∥∥∥Ẑ′
∥∥∥∥∥∥Ĥ−1

w⋆∆
∥∥∥∥∥∥Ẑ′Ĥ−1

w⋆∆
∥∥∥;

10 if β + 2c1
∥∥1⊤R

∥∥ > αϵ/
√
2 log(1.5/δ) then

11 w← the model retrained on the training set of D̂′;
12 β ← 0;
13 else
14 w = w + Ĥ−1

w ∆;

tion error ϵ1 does not vary with the number of removed instances. Regarding the component related
to unlearning, which is mainly determined by ∥Zej − Z′ej∥, we can establish the corresponding
bounds by aggregating the bounds for each unlearning instance, utilizing the Minkowski inequality.
The data-dependent bound remains unchanged and can be computed directly.

Limitations of existing certified unlearning mechanisms. The existing certified unlearning studies,
including ScaleGUN, are limited to linear models with a strongly convex loss function. Achieving
certified graph unlearning in nonlinear models is a significant yet challenging objective. Existing
approximate unlearning methods on deep models are heuristics without theoretical guarantees (Go-
latkar et al., 2020; McAuley et al., 2015). On the one hand, the theoretical foundation of existing
certified unlearning mechanisms is the Newton update. However, the thorough examination of the
Newton update in deep networks remains an unresolved issue (Xu et al., 2018). Koh & Liang (2017)
demonstrates that the Newton update performs well in non-convex shallow CNN networks. However,
performance may decline in deeper architectures as the convexity of the loss function is significantly
compromised (Wu et al., 2023a). On the other hand, note that a certified unlearning model is ap-
proximately equivalent to retraining in terms of their probability distributions. This indicates that
the unlearning model must be able to approximate the new optimal point of empirical risk within a
certain margin of error after data removal. However, existing studies (Wang & Pilanci, 2023) have
proven that even approximating the optimal value of a 2-layer ReLU neural network is NP-hard
in the worst cases. Therefore, the path to certified unlearning in nonlinear models remains elusive,
even for unstructured data. While ScaleGUN cannot achieve certified unlearning for deep models,
our empirical results demonstrate that ScaleGUN can achieve competitive model utility using deep
models as backbones when certified guarantees are not required, as shown in Table 3 and Table 14.
In summary, ScaleGUN can perform certified unlearning for linear GNNs and serves as an effective
heuristic unlearning method for deep models.

Potential improvements and future directions. As suggested in (Guo et al., 2019; Chien et al.,
2022a), pretraining a nonlinear feature extractor on public datasets can significantly improve overall
model performance. If no public datasets are available, a feature extractor with differential privacy
(DP) guarantees can be designed. DP-based methods provide privacy guarantees for nonlinear models,
indicating the potential to leverage DP concepts to facilitate certified unlearning in deep models.
We also observe that ScaleGUN is capable of data removal from deep models to a certain extent
(see Figure 6 in Appendix C), even without theoretical guarantees. This observation suggests the

15

Table 6: Statistics of datasets.

Dataset n m |C| F train/val/test

Cora 2708 5278 7 1433 1208/500/1000
Citeseer 3327 4552 6 3703 1827/500/1000
Photo 7650 119081 8 745 6150/500/1000
ogbn-arxiv 169,343 1,166,243 40 128 90941/29799/48603
ogbn-products 2,449,029 61,859,140 47 128 196615/39323/2213091
ogbn-papers100M 111,059,956 1,615,685,872 172 128 1,207,179/125,265/125,265

Table 7: Parameters used in the linear model experiments.

Dataset rmax λ α

Cora 1e-7 1e-2 0.1
Citeseer 1e-8 1e-2 0.1
Photo 1e-8 1e-4 3.0
ogbn-arxiv 1e-8 1e-4 0.1
ogbn-products 1e-8 1e-4 0.1
ogbn-papers100M 1e-9 1e-8 15.0

possibility of formulating more flexible certification criteria to assess the efficacy of current heuristic
approaches.

B.2 DETAILS OF SEQUENTIAL UNLEARNING ALGORITHM

According to the privacy requirement and Theorem 2.1, we select the noise standard deviation α,
privacy parameters ϵ, δ and compute the “privacy budget” αϵ/

√
2 log(1.5/δ). Initially, compute

the approximate embeddings by the lazy local propagation framework and train the model from
scratch. For each unlearning request, update the embeddings and then employ our unlearning
mechanism. Specifically, compute the first component of the data-dependent bound, i.e., 2c1

∥∥1⊤R
∥∥

in Theorem 4.5 and accumulate the second component γ2
∥∥∥Ẑ′
∥∥∥ ∥∥∥Ĥ−1

w⋆∆
∥∥∥∥∥∥Ẑ′Ĥ−1

w⋆∆
∥∥∥ for each

unlearning request. Once the budget is exhausted, retrain the model from scratch. Note that we do
not need to re-propagate even when retraining the model. Algorithm 1 provides the pseudo-code of
ScaleGUN, where the removal request Ri can be one instance or a batch of instances.

C DETAILS OF EXPERIMENTS AND ADDITIONAL EXPERIMENTS

C.1 EXPERIMENTS SETTINGS.

We use cumulative power iteration to compute exact embeddings for the retrain method, CGU, and
CEU. Each dimension of the embedding matrix is computed in parallel with a total of 40 threads.
We adopt the “one-versus-all” strategy to perform multi-class node classification following (Chien
et al., 2022a). We conduct all experiments on a machine with an Intel(R) Xeon(R) Silver 4114 CPU
@ 2.20GHz CPU, 1007GB memory, and Quadro RTX 8000 GPU in Linux OS. The statistics of the
datasets are summarized in Table 6. Table 7 and Table 8 summarize the parameters used in the linear
and deep experiments, respectively. The parameters are consistently utilized across all methods.

Adversarial edges selection. In Figure 3, we show the model accuracy as the number of removed
adversarial edges increases. We add 500 adversarial edges to Cora, with 5 random edges being
removed in each removal request. For ogbn-arxiv, ogbn-products, and ogbn-papers100M, we add
104 adversarial edges, with batch-unlearning size as 100, 200, and 2000, respectively. The details of
selecting adversarial edges are as follows. For the Cora dataset, we randomly select edges connecting
two distinct labeled terminal nodes and report the accuracy on the whole test set. For large datasets,
randomly selecting adversarial edges proves insufficient to impact model accuracy. Hence, we initially
identify a small set of nodes from the test set, then add adversarial edges by linking these nodes to
other nodes with different labels. Specifically, we first randomly select 2000 nodes from the original
test set to create a new test set Vt. We then repeat the following procedure until we collect enough

16

Table 8: Parameters used in the deep model experiments.

Dataset λ α learning rate hidden size batch size

ogbn-arxiv 5e-4 0.1 1e-3 1024 1024
ogbn-products 1e-4 0.01 1e-4 1024 512
ogbn-papers100M 1e-8 5.0 1e-4 256 8192

Table 9: Test accuracy (%), total unlearning cost (s) and propagation cost (s) per node feature/feature
removal for linear models on Cora and ogbn-arxiv.

Feature Unlearning Node Unlearning

Cora ogbn-arxiv Cora ogbn-arxiv

N Retrain CGU ScaleGUN N Retrain CGU ScaleGUN N Retrain CGU ScaleGUN N Retrain CGU ScaleGUN

0 84.9 84.9 84.9 0 57.84 57.84 57.84 0 84.9 84.9 84.9 0 57.84 57.84 57.84
200 84.17 83.4 83.4 25 57.83 57.84 57.84 200 83.5 82.97 82.97 25 57.83 57.83 57.84
400 84.4 82.43 82.43 50 57.83 57.83 57.83 400 82.43 81.53 81.53 50 57.83 57.83 57.83
600 83.03 81.73 81.73 75 57.84 57.84 57.84 600 81.87 80.7 80.7 75 57.84 57.84 57.84
800 81.9 77.83 77.83 100 57.83 57.85 57.84 800 80.1 76.7 76.7 100 57.83 57.84 57.84

T1 0.44 0.20 0.10 T1 2.59 2.33 1.49 T1 0.44 0.20 0.11 T1 2.66 2.04 1.38
T2 0.11 0.10 0.01 T2 1.55 1.56 0.77 T2 0.10 0.10 0.01 T2 1.66 1.43 0.81

edges: randomly select a node u from Vt, randomly select a node v from the entire node set V , and if
u and v have different labels, we add the adversarial edge (u, v) to the original graph.

Vulnerable edges selection. In Table 1, we show the unlearning results in large graph datasets.
For these datasets, we selected vulnerable edges connected to low-degree nodes in order to observe
changes in test accuracy after unlearning. The details of selecting vulnerable edges are as follows.
We first determine all nodes with a degree below a specified threshold in the test set. Specifically, the
threshold is set to 10 for the ogbn-arxiv and ogbn-products datasets, and 6 for the ogbn-papers100M
dataset. We then shuffle the set of these low-degree nodes and iterate over each node v: For each
node v, if any of its neighbors share the same label as v, the corresponding edge is included in the
unlearned edge set. The iteration ends until we collect enough edges.

C.2 MORE EXPERIMENTS ON NODE FEATURE, EDGE AND NODE UNLEARNING.

Node feature and node unlearning experiments. We conduct experiments on node feature and node
unlearning for linear models and choose Cora, ogbn-arixv, and ogbn-papers100M as the representative
datasets. Table 9 shows the model accuracy, average total cost, and average propagation cost per
removal on Cora and ogbn-arxiv. For Cora, we remove the feature of one node at a time for node
feature unlearning tasks. While for ogbn-arxiv, we remove the feature of 25 nodes. The node
unlearning task is set in the same way. The results demonstrate that ScaleGUN achieves comparable
model utility with retraining while significantly reduce the unlearning costs in node feature and node
unlearning tasks.

Edge unlearning results on small graphs. Table 10 presents test accuracy, average total unlearning
cost, and average propagation cost for edge unlearning in linear models applied to small graph
datasets. For each dataset, 2000 edges are removed, with one edge removed at a time. The table
reports the initial and intermediate accuracy after every 500-edge removal. ScaleGUN is observed to
maintain competitive accuracy when compared to CGU and CEU while notably reducing both the
total and propagation costs. It is important to note that the difference in unlearning cost (Total−Prop)
among the three methods is relatively minor. However, CGU and CEU incur the same propagation
cost as retraining, which is 10× ∼ 30× higher than that of ScaleGUN.

Model utility when removing more than 50% training nodes. To validate the model utility when
the unlearning ratio reaches 50%, we remove 5×104 and 105 training nodes/features from ogbn-arxiv
and ogbn-products in Figure 4. The batch-unlearning sizes are set to 25 and 103 nodes/features,
respectively. The results show that ScaleGUN closely matches the retrained model’s utility even
when half of the training nodes/features are removed.

17

Table 10: Test accuracy (%), total unlearning cost (s), and propagation cost (s) per one-edge removal
for linear models (small graphs).

Cora Citeseer Photo

N(×500) Retrain CGU CEU ScaleGUN N(×500) Retrain CGU CEU ScaleGUN N(×500) Retrain CGU CEU ScaleGUN
0 85.30 84.10 84.10 84.10 0 79.30 78.80 78.80 78.80 0 91.67 89.93 89.93 89.93
1 85.20 83.30 83.30 83.30 1 78.60 78.37 78.37 78.37 1 91.60 89.90 89.90 89.90
2 84.10 82.30 82.30 82.30 2 78.30 78.00 78.00 78.00 2 91.60 89.90 89.90 89.90
3 83.00 81.80 81.80 81.80 3 77.93 77.43 77.43 77.43 3 91.57 89.67 89.67 89.67
4 82.40 81.40 81.40 81.40 4 77.60 77.10 77.10 77.10 4 91.63 89.67 89.67 89.67

Total 0.74 0.28 0.32 0.12 Total 0.99 0.81 0.76 0.55 Total 3.08 0.35 0.40 0.07
Prop 0.15 0.15 0.17 0.01 Prop 0.34 0.29 0.27 0.03 Prop 0.31 0.26 0.29 0.01

0 1 × 104 2 × 104 3 × 104 4 × 104 5 × 104

removed features
55

56

57

58

59

60

Ac
cu

ra
cy

 (%
)

ogbn-arxiv
Retrain
ScaleGUN

0 1 × 104 2 × 104 3 × 104 4 × 104 5 × 104

removed nodes
55

56

57

58

59

60
Ac

cu
ra

cy
 (%

)
ogbn-arxiv

Retrain
ScaleGUN

0 2 × 104 4 × 104 6 × 104 8 × 104 1 × 105

removed features
55

56

57

58

59

60

Ac
cu

ra
cy

 (%
)

ogbn-products
Retrain
ScaleGUN

0 2 × 104 4 × 104 6 × 104 8 × 104 1 × 105

removed nodes
55

56

57

58

59

60

Ac
cu

ra
cy

 (%
)

ogbn-products
Retrain
ScaleGUN

Figure 4: Unlearning more than 50% of training nodes/features: Test accuracy on ogbn-arxiv and
ogbn-products.

C.3 PARAMETER STUDIES.

Trade-off between privacy, model utility, and unlearning efficiency. According to Theorem 2.1
and our sequential unlearning algorithm, there is a trade-off amongst privacy, model utility, and
unlearning efficiency. Specifically, ϵ and δ controls the privacy requirement. To achieve (ϵ, δ)-certified
unlearning, we can adjust the standard deviation α of the noise b. An overly large α introduces too
much noise and may degrade the model utility. However, a smaller α may lead to frequent retraining
and increase the unlearning cost due to the privacy budget constraint. We empirically analyze
the trade-off between privacy and model utility, by removing 800 nodes from Cora, one at a time.

0 100 200 300 400 500 600
Number of removals

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 A
cc

ur
ac

y
(%

)

Cora - Node unlearning

α=0.01
α=0.1
α=0.2
α=0.5
α=1.0
α=5.0
α=10.0

Figure 5: Varying α (αϵ = 0.1 fixed): Test accu-
racy v.s. the number of removed nodes on Cora.

To control the frequency of retraining, we fix
αϵ = 0.1 and vary the standard derivation α of
the noise b. The results are shown in Figure 5.
Here, we set δ = 1/#nodes and rmax = 10−10.
We observe that the model accuracy decreases
as α increases (i.e., ϵ decreases), which agrees
with our intuition.

Varying batch-unlearning size. To validate the
model efficiency and model utility under vary-
ing batch-unlearning sizes, we vary the batch-
unlearning size in {1×103, 3×103, 5×103, 10×
103} for ogbn-products and {2 × 103, 10 ×
103, 50×103} for ogbn-papers100M in Table 11.
The average total cost and propagation cost for
five batches and the accuracy after unlearning
five batches are reported. For comparison, the corresponding retraining results are provided, where
1× 103 and 2× 103 nodes are removed per batch for ogbn-products and ogbn-papers100M, respec-
tively. ScaleGUN maintains superior efficiency over retraining, even when the batch-unlearning size
becomes 4%-5% of the training set in large graphs (e.g., 50× 103 nodes in a batch out of 1.2× 106

total training nodes of ogbn-papers100M). The test accuracy demonstrates that ScaleGUN preserves
model utility under varying batch-unlearning sizes.

Results on δ = 1
#edges/

1
#nodes . Table 12 presents the batch edge unlearning results on large

graphs with δ = 1
#edges . Modifying δ reduces the privacy budget slightly and potentially incurs

more frequent retraining. Thus, we adjust rmax for each dataset to mitigate retraining requirements.
Specifically, we set rmax = 10−10 across all three datasets for simplicity. Despite these adjustments,

18

Table 11: Varying batch-unlearning size: Test accuracy (%), average total cost (s), and average
propagation cost (s) per batch node removal.

Metric

ogbn-products ogbn-papers100M

ScaleGUN Retrain ScaleGUN Retrain

1× 103 3× 103 5× 103 10× 103 1× 103 2× 103 10× 103 50× 103 2× 103

Acc 56.25 56.25 56.07 56.14 56.24 59.49 59.71 58.76 59.45
Total 24.00 39.07 45.58 56.14 92.44 54.85 352.35 657.99 5201.88
Prop 21.97 37.25 43.91 54.72 91.54 15.49 313.11 621.62 5139.09

Table 12: Test accuracy (%), total unlearning cost (s) and propagation cost (s) per batch edge removal
for linear models (large graphs, δ = 1

#edges).

ogbn-arxiv ogbn-products ogbn-papers100M

N Retrain CGU CEU ScaleGUN N(×103) Retrain CGU CEU ScaleGUN N(×103) Retrain ScaleGUN
0 57.83 57.84 57.84 57.84 0 56.24 56.17 56.17 56.04 0 59.99 59.82

25 57.83 57.84 57.84 57.84 1 56.23 56.16 56.16 56.03 2 59.71 59.71
50 57.82 57.83 57.83 57.83 2 56.22 56.15 56.15 56.02 4 59.55 59.90
75 57.82 57.82 57.82 57.82 3 56.21 56.15 56.15 56.15 6 59.89 59.32
100 57.81 57.81 57.81 57.81 4 56.20 56.14 56.14 56.24 8 59.46 59.59
125 57.81 57.81 57.81 57.81 5 56.19 56.13 56.13 56.17 10 59.26 59.15

Total 2.66 3.36 3.42 1.08 Total 101.90 87.79 88.90 11.69 Total 6764.31 54.79
Prop 1.73 2.78 2.91 0.85 Prop 98.48 86.81 87.95 10.81 Prop 6703.44 9.02

Table 12 shows the superior performance of ScaleGUN. The node feature/node unlearning results
exhibit similar trends and are omitted for brevity.

C.4 ADDITIONAL VALIDATION OF UNLEARNING EFFICACY.

Unlearning efficacy on deep models. We also evaluate the unlearning efficacy for deep models.
Figure 6 shows how the model accuracy varies as the number of removed adversarial edges increases.
The adversarial edges are the same as those used for linear models. The results demonstrate that
ScaleGUN can effectively unlearn the adversarial edges even in shallow non-linear networks.

Membership Inference Attack (MIA). As noted in (Chien et al., 2022b), MIA has distinct
design goals from unlearning. Even after unlearning a training node, the attack model may
still recognize the unlearned node in the training set if there are other similar training nodes.
Nonetheless, we follow (Chien et al., 2022b; Cheng et al., 2023) to conduct MIA (Olatunji
et al., 2021) on Cora and ogbn-arxiv in Table 13. The core idea is that if the target model
effectively unlearns a training node, the MI attacker will determine that the node is not
present in the training set, i.e., the presence probability of the unlearned nodes decreases.

Table 13: MIA: The ratio of the presence proba-
bility of the unlearned nodes between the original
model and target models after unlearning.

Target model Cora (↑) ogbn-arxiv (↑)

Retrain 1.698±0.21 1.232±0.388
CGU 1.526±0.120 1.231±0.388
ScaleGUN 1.524±0.130 1.232±0.388

We remove 100 training nodes from Cora and
125 from ogbn-arxiv. We then report the ratio
of the presence probability of these unlearned
nodes between the original model (which does
not unlearn any nodes) and target models after
unlearning. A reported ratio greater than 1.0
indicates that the target model has successfully
removed some information about the unlearned
nodes, with higher values indicating better per-
formance. Table 13 indicates that ScaleGUN
offers privacy-preserving performance compara-
ble to retraining in the context of MIA.

C.5 APPLY SCALEGUN TO SPECTRAL GNNS.

Besides decoupled GNNs that incorporate MLPs, ScaleGUN can also be applied to spectral
GNNs (Chien et al., 2020; He et al., 2022), which are a significant subset of existing GNN models and
have shown superior performance in many popular benchmarks. For example, ChebNetII (He

19

0 2000 4000 6000 8000 10000
removed adversarial edges

0.50

0.52

0.54

0.56

0.58

0.60
Ac

cu
ra

cy
 (%

)

ogbn-arxiv
Retrain
ScaleGUN

0 2000 4000 6000 8000 10000
removed adversarial edges

0.70

0.71

0.72

0.73

0.74

0.75

0.76

Ac
cu

ra
cy

 (%
)

ogbn-products
Retrain
ScaleGUN

0 1000 2000 3000 4000 5000
removed adversarial edges

0.59

0.60

0.61

0.62

0.63

Ac
cu

ra
cy

 (%
)

ogbn-papers100M
Retrain
ScaleGUN

Figure 6: Comparison of unlearning efficacy for deep model: Model accuracy v.s. the number of
removed adversarial edges.

et al., 2022) can be expressed as Y = fθ(Z), Z =
∑K

k=0 wkTk(L̂)X when applied to large
graphs, where Tk are the Chebyshev polynomials, fθ is a MLP and wk are learnable parameters.

Table 14: Test accuracy (%), total unlearning cost
(s), and propagation cost (s) per batch edge re-
moval using ChebNetII as the backbone on ogbn-
arxiv.

Retrain ScaleGUN

0 71.99 71.99
25 72.08 71.98
50 72.01 71.98
75 71.8 71.96
100 72.3 71.94
125 71.79 71.93

Prop 14.96 3.13
Total 58.51 5.84

We can maintain Tk(L̂)X using the lazy local
framework and perform unlearning on fθ and
wk, similar to that of Table 3. Table 14 demon-
strated the unlearning results using ChebNetII
as the backbone on ogbn-arxiv, mirroring the un-
learning settings with Table 1. This suggests that
ScaleGUN can achieve competitive performance
when no certified guarantees are required.

Licenses of the datasets. Ogbn-arxiv and ogbn-
papers100M are both under the ODC-BY li-
cense. Cora, Citeseer, Photo, and ogbn-products
are under the CC0 1.0 license, Creative Com-
mons license, Open Data Commons Attribution
License, and Amazon license, respectively.

D DETAILS OF LAZY LOCAL PROPAGATION FRAMEWORK

D.1 DIFFERENCES BETWEEN SCALEGUN AND EXISTING DYNAMIC PROPAGATION METHODS

Existing dynamic propagation methods focus on the PPR-based propagation scheme, while ScaleGUN
adopts the GPR-based one. Note that these dynamic propagation methods based on PPR cannot be
straightforwardly transformed to accommodate GPR. Specifically, PPR-based methods can simply
maintain a reserve vector q and a residue vector r. In contrast, GPR-based propagation requires q(ℓ)

and r(ℓ) for each level ℓ. This difference also impacts the theoretical analysis of correctness and
time complexity. Therefore, we have developed tailored algorithms and conducted a comprehensive
theoretical analysis of the GPR-based scheme.

Choosing GPR enhances the generalizability of our framework. Specifically, our framework computes
the embedding Z =

∑L
ℓ=0 wℓP

ℓX, wherein PPR, the weights wℓ are defined as α(1− α)ℓ with α
being the decay factor and L tending towards infinity. Such a formulation allows the theoretical
underpinnings of ScaleGUN to be directly applicable to PPR-based models, illustrating the broader
applicability of our approach. One could replace the propagation part in ScaleGUN with the
existing dynamic PPR approaches and obtain a certifiable unlearning method for PPR-based models.
Conversely, confining our analysis to PPR would notably limit the expansiveness of our results.

Limitations of InstantGNN to achieve certified unlearning. InstantGNN (Zheng et al., 2022)
provides an incremental computation method for the graph embeddings of dynamic graphs, accom-
modating insertions/deletions of nodes/edges and modifications of node features. However, simply
applying InstantGNN for unlearning does not lead to certified unlearning, as this requires a thorough
analysis of the impact of approximation error on the certified unlearning guarantee. Certified unlearn-
ing mandates that the gradient residual norm on exact embeddings, i.e., ||∇L(w−, D′)||, remains
within the privacy limit, as detailed in Theorem 2.1. InstantGNN, which relies on approximate em-

20

beddings for training, lacks a theoretical analysis of ||∇L(w−, D′)||. Whether InstantGNN retrains
the model for each removal or employs an adaptive training strategy for better performance, it lacks
solid theoretical backing. Thus, InstantGNN is considered a heuristic method without theoretical
support.

D.2 ALGORITHMS OF LAZY LOCAL PROPAGATION FRAMEWORK

Initial propagation. Algorithm 2 illustrates the pseudo-code of Forward Push on a graph G with
P = AD−1 and L propagation steps. Initially, we normalize x to ensure

∥∥∥D 1
2x
∥∥∥
1
≤ 1, and let

q(ℓ) = r(ℓ) = 0 for 0 ≤ ℓ ≤ L, except for r(0) = D
1
2x when ℓ = 0. After employing Algorithm 2,

we obtain ẑ =
∑L

ℓ=0 wℓD
− 1

2 q(ℓ) as the approximation of z.

Algorithm 2: BasicProp

Input: Graph G, level L, threshold rmax, and initialized {q(ℓ), r(ℓ)}, 0 ≤ ℓ ≤ L
Output: New estimated vectors {q(ℓ), r(ℓ)}

1 for ℓ from 0 to L− 1 do
2 for u ∈ V with |r(ℓ)(u)| > rmax do
3 for each v ∈ N (u) do
4 r(ℓ+1)(v)+ = r(ℓ)(u)

d(u) ;

5 q(ℓ)(u)+ = r(ℓ)(u) and r(ℓ)(u)← 0 ;

6 q(L) ← q(L) + r(L) and r(L) ← 0n×F ;
7 return {q(ℓ), r(ℓ)}, 0 ≤ ℓ ≤ L

Efficient Removal. Algorithm 3 details the update process for edge removal. Upon a removal request,
we first adjust {r(ℓ)} locally for the affected nodes to maintain the invariant property. Post-adjustment,
the invariant property is preserved across all nodes. Then, Algorithm 2 is invoked to reduce the error
further and returns the updated ẑ. Note that the degree of node u and node v is revised in Line 1.

Batch update. Inspired by (Zheng et al., 2022), we introduce a parallel removal algorithm upon
receiving a batch of removal requests. Specifically, we initially update the graph structure to reflect
all removal requests and then compute the final adjustments for each affected node. Notably, the
computation is conducted only once, thus significantly enhancing efficiency. We extend Algorithm 3
to accommodate batch-edge removal, simultaneously enabling parallel processing for multiple edges.
The core concept involves adjusting both the reserves and residues for nodes impacted by the removal,
deviating from Algorithm 3 where only the residues are modified. The benefit of altering the reserves
is that only the reserves and residues for nodes u and v need updates when removing the edge (u, v).
Consequently, this allows the removal operations for all edges to be executed in parallel. Algorithm 4
details the batch update process for edge removal. Batch-node removal and batch-feature removal
can be similarly implemented.

D.3 THEORETICAL ANALYSIS OF LAZY LOCAL PROPAGATION FRAMEWORK

Denote {∆r(ℓ)} as the adjustments to residues before invoking Forward Push (Algorithm 2) for

further reducing the error. For instance, we have ∆r(ℓ)(u) = q(ℓ−1)(v)
d(v)+1 for ℓ > 0. Let d be the

average degree of the graph. We introduce the following theorems regarding the time complexity of
our lazy local propagation framework.

Theorem D.1 (Initialization Cost, Update Cost, and Total Cost). Let ẑ0 be the initial embedding
vector generated from scratch. ẑi and {r(ℓ)i } represents the approximate embedding vector and the
residues after the i-th removal, respectively. Each embedding vector ẑi satisfies Lemma 3.1. Given the
threshold rmax, the cost of generating ẑ0 from scratch is O

((
L−

∑L−1
ℓ=0 (L− ℓ)

∥∥∥r(ℓ)0

∥∥∥
1

)
· d
rmax

)
.

21

Algorithm 3: UpdateEmbeddingMatrix(EdgeRemoval)

Input: Graph G, level L, edge e = (u, v) to be removed, threshold rmax, {wℓ} and {q(ℓ), r(ℓ)},
0 ≤ ℓ ≤ L

Output: Ẑ ∈ Rn

1 G′ ← delete (u, v) from G ;
2 r(0)(u)← r(0)(u) + (d(u)

1
2 − (d(u) + 1)

1
2)x(u);

3 r(0)(v)← r(0)(v) + (d(v)
1
2 − (d(v) + 1)

1
2)x(v);

4 for ℓ from 1 to L do
5 r(ℓ)(u)← r(ℓ)(u)− q(ℓ−1)(v)

d(v)+1 ;
6 for w ∈ N (u) do
7 r(ℓ)(w)← r(ℓ)(w) + q(ℓ−1)(u)

d(u)(d(u)+1) ;

8 r(ℓ)(v)← r(ℓ)(v)− q(ℓ−1)(u)
d(u)+1 ;

9 for w ∈ N (v) do
10 r(ℓ)(w)← r(ℓ)(w) + q(ℓ−1)(v)

d(v)(d(v)+1) ;

11 {q(ℓ), r(ℓ)} ← BasicProp(G′, L, rmax, {q(ℓ), r(ℓ)});
12 return

∑L
ℓ=0 wℓD

− 1
2 q(ℓ)

Algorithm 4: BatchUpdate(EdgeRemoval)
Input: Graph G, level L, edges to be unlearned S = {e1, · · · , ek}, weight coefficients wℓ,

threshold rmax, (q(ℓ), r(ℓ)), 0 ≤ ℓ ≤ L

Output: Ẑ ∈ Rn

1 Update G according to S, and let ∆u be the number of removed neighbors of node u;
2 Va ← {u | the degree of node u has changed};
3 parallel for u ∈ Va do
4 q(0)(u)← d(u)

d(u)+∆(u)q
(0)(u);

5 r(0)(u)← d(u)
1
2x(u)− q(0)(u);

6 for ℓ from 1 to L do
7 parallel for u ∈ Va do
8 q(ℓ)(u)← d(u)

d(u)+∆(u)q
(ℓ)(u);

9 r(ℓ)(u)← r(ℓ)(u) + ∆(u)
d(u) q

(ℓ)(u);
10 for each v ∈ {removed neighbors of node u} do
11 r(ℓ)(u)← r(ℓ)(u)− q(ℓ−1)(v)

d(v) ;

12 {q(ℓ), r(ℓ)} ← BasicProp(G′, L, rmax, {wℓ}, {q(ℓ), r(ℓ)});
13 return

∑L
ℓ=0 wℓD

− 1
2 q(ℓ)

The cost for updating ẑi−1 and {r(ℓ)i−1} to generate ẑi is

O

(
d+

d

rmax
·
L−1∑
ℓ=0

(L− ℓ)
(∥∥∥r(ℓ)i−1

∥∥∥
1
+
∥∥∥∆r

(ℓ)
i

∥∥∥
1
−
∥∥∥r(ℓ)i

∥∥∥
1

))
,

where {∆r
(ℓ)
i } represent the adjustments of residues for the i-th removal. For a sequence of K

removal requests, the total cost of initialization and K removals is

O

(
Ld

rmax
+Kd+

K∑
i=1

L−1∑
ℓ=0

∥∥∥∆r
(ℓ)
i

∥∥∥
1

Ld

rmax

)
.

22

E PROOFS OF THEORETICAL RESULTS

Notations for proofs. For the sake of readability, we use l(Z,w, i) to denote l(e⊤i Zw, e⊤i Y). Zi

represents the embedding column vector of node i. When referring to the embedding row vector of
Z, we use e⊤i Z. Zij denotes the term at the i-th row and the j-th column of Z. |v| represents the
vector with the absolute value of each element in vector v.

E.1 PROOF OF EQUATION (1) AND LEMMA 3.2

Equation (1) is presented as follows:

z =

L∑
ℓ=0

wℓD
− 1

2

(
q(ℓ) +

ℓ∑
t=0

(AD−1)ℓ−tr(t)

)
.

Lemma. For each feature vector x, the reserve vectors {q(ℓ)} and the residue vectors {r(ℓ)} satisfy
the following invariant property during the propagation process:

q(ℓ)(u) + r(ℓ)(u) = D(u)
1
2x(u), ℓ = 0

q(ℓ)(u) + r(ℓ)(u) =
∑

t∈N (u)

q(ℓ−1)(t)

d(t)
, 0 < ℓ ≤ L

For simplicity, we reformulate the invariant into the vector form:{
q(ℓ) + r(ℓ) = D

1
2x, ℓ = 0

q(ℓ)(u) + r(ℓ)(u) = AD−1q(ℓ−1), 0 < ℓ ≤ L
(3)

We prove that Equation (1) and Lemma 3.2 hold during the propagation process by induction. At
the beginning of the propagation, we initialize q(ℓ) = 0 for all ℓ, r(0) = D

1
2x and r(ℓ) = 0 for all

ℓ > 1. Therefore, Equation (3) and Equation (1) hold at the initial state. Consider the situation of
level 0. Since we set r(0)(u) = 0 and q(0)(u) = r(0)(u) once we push the residue r(ℓ)(u). The sum
of r(0)(u) and q(0)(u) for any node u remains unchanged during the propagation. Thus, Equation (3)
holds for level 0. Consider the situation of level ℓ > 0. Assuming that Equation (3) and Equation (1)
holds after a specific push operation. Consider a push operation on node u from level k to level k+1,
0 ≤ k < L. Let y = r(k)(u), eu is the one-hot vector with only 1 at the node u and 0 elsewhere.
According to Line 3 to 5 in Algorithm 2, the push operation can be described as follows:

r′(k+1) = r(k+1) +AD−1 · yeu
q′(k) = q(k) + yeu

r′(k) = r(k) − yeu

(4)

Therefore, we have

q′(k+1) + r′(k+1) = q(k+1) + r(k+1) +AD−1 · yeu
AD−1q′(k) = AD−1(q(k) + yeu)

Note that q(k+1) + r(k+1) = AD−1q(k) is satistied before this push operation. Thus, q′(k+1) +
r′(k+1) = AD−1q′(k), and thus Equation (3) holds after this push operation. For Equation (1), the
right side of the equation is updated to:

L∑
ℓ

wℓD
− 1

2

(
q′(ℓ) +

ℓ∑
t=0

(AD−1)ℓ−tr′(t)

)
.

Plugging the updated q′(k), r′(k), r′(k+1) into the equation, we derive that Equation (1) holds after
this push operation. This completes the proof of Equation (1) and Lemma 3.2.

23

E.2 PROOF OF LEMMA 3.1

Lemma. Given the threshold rmax, the L2-error between z and ẑ is bounded by

∥ẑ− z∥2 ≤
√
nLrmax. (5)

Proof. As stated in Equation (1), we have

z− ẑ =

L∑
ℓ=0

wℓD
− 1

2

ℓ∑
t=0

(AD−1)ℓ−tr(t).

Since the largest eigenvalue of AD−1 is no greater than 1, we have
∥∥(AD−1)ℓ

∥∥
2
≤ 1 for ℓ ≥ 0. D

is a diagonal matrix, and d(u)
−1
2 is no greater than 1 for all u. Thus,

∥∥∥D− 1
2

∥∥∥
2
≤ 1. Therefore, we

have

∥ẑ− z∥ =

∥∥∥∥∥
L∑

ℓ=0

wℓD
− 1

2

ℓ∑
t=0

(AD−1)ℓ−tr(t)

∥∥∥∥∥
≤

L∑
ℓ=0

|wℓ|
ℓ∑

t=0

∥∥∥D− 1
2 (AD−1)ℓ−tr(t)

∥∥∥
≤

L∑
ℓ=0

|wℓ|
ℓ∑

t=0

∥∥∥D− 1
2

∥∥∥∥∥(AD−1)ℓ−t
∥∥ ∥∥∥r(t)∥∥∥ .

The norm of r(t) can be derived as
√
nrmax since each item of r(t) is no greater than rmax. Given

that
∑L

ℓ=0 |wℓ| ≤ 1, we conclude that ∥ẑ− z∥2 ≤
√
nLrmax.

E.3 PROOF OF THEOREM D.1

Proof. First, consider the initialization cost for generating ẑ0. Recall that we have r(0) = D
1
2x

before we invoke Algorithm 2. In Algorithm 2, we push the residue r(ℓ)(u) of node u to its neighbors
whenever r(ℓ)(u) > rmax. Each node is pushed at most once at each level. Thus, for level 0, there
are at most

∥∥∥D 1
2x− r

(0)
0

∥∥∥
1
/rmax nodes with residues greater than rmax, where r

(0)
0 is the residues

of level 0 after the generation. The average cost for one push operation is O(d), the average degree
of the graph. Therefore, it costs at most T (0) =

∥∥∥D 1
2x− r

(0)
0

∥∥∥
1
d/rmax time to finish the push

operations for level 0. In Algorithm 2, a total of r(ℓ)(u) will be added to the residues at the next
level once we perform push on node u. Therefore, after the push operations for level 0,

∥∥r(1)∥∥
1

is no

greater than
∥∥∥D 1

2x− r
(0)
0

∥∥∥
1
. Thus, the cost of the push operations at level 1 satisfies that

T (1) ≤
(∥∥∥D 1

2x− r
(0)
0

∥∥∥
1
−
∥∥∥r(1)0

∥∥∥
1

)
· d

rmax

=T (0) −
∥∥∥r(1)0

∥∥∥
1
· d

rmax
,

Similarly, the cost of the push operations at level ℓ is bounded by T (ℓ) = T (ℓ−1) −
∥∥∥r(ℓ)0

∥∥∥
1

d
rmax

.

Therefore, the total cost of generating ẑ is O
((

L−
∑L−1

ℓ=0 (L− ℓ)
∥∥∥r(ℓ)0

∥∥∥
1

)
· d
rmax

)
.

Second, consider the update cost for a single removal. For ease of analysis, we design the following
update procedure: First, we update the residues of the nodes whose degrees have changed at all levels,
corresponding to Algorithm 3 Line 1-11. We denote the residues as {r(ℓ)±i} after the first step. Then,

we push the non-negative residues for all levels. We denote the residues as {r(ℓ)−i} after pushing the
non-negative residues. Finally, we push the negative residues at all levels, resulting in the approximate
embedding vector ẑi and its residues {r(ℓ)i }. The cost of the first step is O(d(u) + d(v)) = O(d).

24

Denote the cost of the push operations at level ℓ as T (ℓ), which contains the cost of pushing non-
negative residues T (ℓ)

+ and the cost of pushing negative residues T (ℓ)
− .

Consider the cost of pushing non-negative residues. For level 0, we have

T
(0)
+ =

∥∥∥r(0)−i − r
(0)
±i

∥∥∥
1
· d

rmax
≤
(∥∥∥r(0)±i

∥∥∥
1
−
∥∥∥r(0)−i

∥∥∥
1

)
· d

rmax
.

Note that the residues at level 1 will be modified since the non-negative residues at level 0 are pushed.
Specifically, let the modification be r̃(1), that is, the residues of level 1 of this time is r(1)±i + r̃(1).
Thus, the cost of pushing non-negative residues at level 1 is

T
(1)
+ =

∥∥∥r(1)−i −
(
r
(1)
±i + r̃(1)

)∥∥∥
1
· d

rmax

≤
(∥∥∥r(1)±i

∥∥∥
1
−
∥∥∥r(1)−i

∥∥∥
1

)
· d

rmax
+
∥∥∥r̃(1)∥∥∥

1
· d

rmax
.

Note that
∥∥r̃(1)∥∥

1
is exactly the sum of the pushed residues from level 0, which is no greater than∥∥∥r(0)±i

∥∥∥
1
−
∥∥∥r(0)−i

∥∥∥
1
. Thus, we have

T
(1)
+ ≤

(∥∥∥r(1)±i

∥∥∥
1
−
∥∥∥r(1)−i

∥∥∥
1

)
· d

rmax
+ T

(0)
+ .

Similarly, we have

T
(ℓ)
+ ≤

(∥∥∥r(ℓ)±i

∥∥∥
1
−
∥∥∥r(ℓ)−i

∥∥∥
1

)
· d

rmax
+ T

(ℓ−1)
+ .

Therefore, we derive that

T+ ≤
L−1∑
ℓ=0

T
(ℓ)
+ ≤

L−1∑
ℓ=0

(L− ℓ)
(∥∥∥r(ℓ)±i

∥∥∥
1
−
∥∥∥r(ℓ)−i

∥∥∥
1

)
· d

rmax
. (6)

The cost of pushing negative residues is similar. We have

T
(0)
− =

∥∥∥r(0)i − r
(0)
−i

∥∥∥
1
· d

rmax
≤
(∥∥∥r(0)−i

∥∥∥
1
−
∥∥∥r(0)i

∥∥∥
1

)
· d

rmax
.

Thus T− can be derived as

T− ≤
L−1∑
ℓ=0

T
(ℓ)
− =

L−1∑
ℓ=0

(L− ℓ)
(∥∥∥r(ℓ)−i

∥∥∥
1
−
∥∥∥r(ℓ)i

∥∥∥
1

)
· d

rmax
. (7)

Summing up Equation (6) and Equation (7), the i-th update costs can be derived as

Ti ≤ 2d+

L−1∑
ℓ=0

(L− ℓ)
(∥∥∥r(ℓ)±i

∥∥∥
1
−
∥∥∥r(ℓ)i

∥∥∥
1

)
· d

rmax

Recall that r(ℓ)±i can be derived from r
(ℓ)
i−1 by the first step. Let r(ℓ)±i = r

(ℓ)
i−1 +∆r

(ℓ)
i . We can conclude

that

Ti ≤ O

(
d+

d

rmax
·
L−1∑
ℓ=0

(L− ℓ)
(∥∥∥r(ℓ)i−1

∥∥∥
1
+
∥∥∥∆r

(ℓ)
i

∥∥∥
1
−
∥∥∥r(ℓ)i

∥∥∥
1

))
.

25

Finally, consider the total cost for K removals. The total cost is the sum of the initial and update
costs for K updates.

T =Tinit +

K∑
i=1

Ti

≤

(
L
∥∥∥D 1

2x
∥∥∥
1
−

L−1∑
ℓ=0

(L− ℓ)
∥∥∥r(ℓ)0

∥∥∥
1

)
· d

rmax

+

K∑
i=1

d+

K∑
i=1

d

rmax
·
L−1∑
ℓ=0

(L− ℓ)
(∥∥∥r(ℓ)i−1

∥∥∥
1
+
∥∥∥∆r

(ℓ)
i

∥∥∥
1
−
∥∥∥r(ℓ)i

∥∥∥
1

)
≤L

∥∥∥D 1
2x
∥∥∥
1

d

rmax
+Kd

+

K∑
i=1

d

rmax
·
L−1∑
ℓ=0

(L− ℓ)
∥∥∥∆r

(ℓ)
i

∥∥∥
1
−

L−1∑
ℓ=0

(L− ℓ)
∥∥∥r(ℓ)i

∥∥∥
1

(a)

≤L
∥∥∥D 1

2x
∥∥∥
1

d

rmax
+Kd+

K∑
i=1

L

L−1∑
ℓ=0

∥∥∥∆r
(ℓ)
i

∥∥∥
1

d

rmax
,

where we omit the −
∑L−1

ℓ=0 (L− ℓ)
∥∥∥r(ℓ)K

∥∥∥
1

in (a). This completes the proof.

E.4 PROOF OF THEOREM 3.3

Theorem. For a sequence of m removal requests that remove all edges of the graph, the amortized
cost per edge removal is O

(
L2d

)
. For a sequence of K random edge removals, the expected cost per

edge removal is O
(
L2d

)
.

With the help of Theorem D.1, we derive the proof of Theorem 3.3 as follows.

Proof. Consider the amortized cost for m removal requests. First, we observe that
∑m

i=1

∥∥∥∆r
(0)
i

∥∥∥
1
=∥∥∥D 1

2
0 x
∥∥∥
1
, where we denote the degree matrix of the initial graph as D0. To explain,

∥∥∆r(0)
∥∥
1
=

((d(u) + 1)
1
2 − d(u)

1
2) |x(u)| + ((d(v) + 1)

1
2 − d(v)

1
2) |x(v)| if we remove edge (u, v), where

d(u) is the new degree of node u. All nodes have no edges at the end of the m removals. Thus,

the sum of
∥∥∥∆r

(0)
m

∥∥∥
1

for the m removals is
∥∥∥D 1

2
0 x
∥∥∥
1
. And we observe that

∥∥∆r(ℓ)
∥∥
1

for ℓ > 0

is O
(∥∥∆r(0)

∥∥
1

)
for each removal. First, we have

∥∥∆r(ℓ)
∥∥
1
=

2|q(ℓ−1)(u)|
d(u)+1 +

2|q(ℓ−1)(v)|
d(v)+1 . Note

that
∑L

t=1

∣∣q(t−1)(u)
∣∣ ≤ 1 and |x(u)| ≤ 1 since x is normalized such that

∥∥∥D 1
2x
∥∥∥
1
≤ 1. Thus,∥∥∆r(ℓ)

∥∥
1
≤ 2

d(u)+1 + 2
d(v)+1 . On the other hand, since (d(u) + 1)

1
2 − d(u)

1
2 ≤ 1

2
√

d(u)
, we have∥∥∆r(0)

∥∥
1
≤ 1

2
√

d(u)
+ 1

2
√

d(v)
due to |x(u)| ≤ 1 for any node u. Therefore,

∥∥∆r(ℓ)
∥∥
1
≤ 4

∥∥∆r(0)
∥∥
1

for any removal and any ℓ > 0. Thus, the sum
∑L−1

ℓ=0

∥∥∆r(ℓ)
∥∥
1
= O

(
L
∥∥∆r(0)

∥∥
1

)
. Plugging the

result into the total cost in Theorem D.1, the total cost for m removals is

T = L
∥∥∥D 1

2x
∥∥∥
1

d

rmax
+md+

m∑
i=1

L

L−1∑
ℓ=0

∥∥∥∆r
(ℓ)
i

∥∥∥
1

d

rmax

≤L
∥∥∥D 1

2x
∥∥∥
1

d

rmax
+md+O

(
m∑
i=1

L2
∥∥∥∆r

(0)
i

∥∥∥
1

d

rmax

)

≤L
∥∥∥D 1

2x
∥∥∥
1

d

rmax
+md+O

(
L2
∥∥∥D 1

2x
∥∥∥
1

d

rmax

)

26

We set rmax = 1/
√
ntn by the certified unlearning requirement, where nt represents the size of the

training set. Thus, rmax ≥ 1/n. The amortized cost per edge removal is

T

m
= O

(
1

m
· L2

∥∥∥D 1
2x
∥∥∥
1
dn

)
.

Since we have m ≥ n and
∥∥∥D 1

2x
∥∥∥
1
≤ 1, we conclude that the amortized cost is O(L2d).

Consider the expected cost for K random edge removals. Each node has the same probability of
being the endpoint of a removed edge. When removing e = (u, v), the part induced by node u in∑L−1

ℓ=0

∥∥∆r(ℓ)
∥∥
1

can be expressed as

Su =
(
(d(u) + 1)

1
2 − d(u)

1
2

)
|x(u)|

+

L∑
t=1

∣∣q(t−1)(u)
∣∣

d(u) + 1
+

∑
w∈N (u)

∣∣q(t−1)(u)
∣∣

d(u)(d(u) + 1)
.

The first term
(
(d(u) + 1)

1
2 − d(u)

1
2

)
|x(u)| is less than |x(u)| and the second term equals

2|q(t−1)(u)|
d(u)+1 . Therefore, the expected value of Su is

E[Su] =
1

n

∑
u∈V

Su =
1

n

∑
u∈V

|x(u)|+ 2

n

∑
u∈V

L∑
t=1

∣∣q(t−1)(u)
∣∣

d(u) + 1
.

The first term is O(1n) and
∑

u∈V

∣∣q(t−1)(u)
∣∣ in second term is less than 1 for all level t both due to

the fact that
∥∥∥D 1

2x
∥∥∥
1
≤ 1. Thus, the second term is less than 2L

n . The expected value of Su is O(1n).

Therefore, for one edge removal, the expected value of
∑L−1

ℓ=0

∥∥∆r(ℓ)
∥∥
1

is O(1n). Note that we set
rmax = O(1/

√
ntn) ≥ 1/n. Plugging the result into the total cost in Theorem D.1, the expected

cost per edge removal is O
(
L2d

)
.

E.5 PROOF OF THEOREM 4.2

Theorem. Suppose that Assumption 4.1 holds and the feature of node u is to be unlearned. If
∀j ∈ [F],

∥∥∥Ẑej − Zej

∥∥∥ ≤ ϵ1, we have ∥∇L(w−,D′)∥ is less than(cγ1
λ

F + c1
√

F (nt − 1)
)(

ϵ1 +
8γ1F

λ(nt − 1)
·
√
d(u)

)
.

For the sake of simplicity, the upper bound of ∥Zej − Z′ej∥ for all j ∈ [F] is denoted as ϵ2 in the
following analysis. At the end of the proof, we will plug the bound in Lemma E.1 into the result. We
also assume that node u is the nt-th node in the training. We state the following lemmas to support
the proof.

Lemma E.1. Suppose that the feature of node u is to be removed. Then, we have ∥Zej − Z′ej∥ ≤√
d(u) for all j ∈ [F].

Lemma E.2. ∀j ∈ [F], suppose that
∥∥∥Ẑej − Zej

∥∥∥ ≤ ϵ1. We have
∥∥∥∑i∈[nt−1]

(
Ẑi − Zi

)∥∥∥ ≤√
F (nt − 1)ϵ1.

Lemma E.3. ∀j ∈ [F], suppose that ∥Z′ej − Zej∥ ≤ ϵ2. We have
∥∥∥∑i∈[nt−1] (Z

′
i − Zi)

∥∥∥ ≤√
F (nt − 1)ϵ2.

Lemma E.4. For the embedding vector z =
∑L

ℓ=0 wℓ

(
D− 1

2AD− 1
2

)ℓ
x, where ∥x∥ ≤ 1 and∑L

ℓ=0 wℓ ≤ 1, we have ∥z∥ ≤ 1.

27

Proof. We note that ∥∇L(w−,D′)∥ can be written as∥∥∥∇L(w−,D′) +∇L(w−, D̂′)−∇L(w−, D̂′)
∥∥∥ ,

which is less than
∥∥∥∇L(w−,D′)−∇L(w−, D̂′)

∥∥∥+ ∥∥∥∇L(w−, D̂′)
∥∥∥ due to the Minkowski inequal-

ity.

We start with the term
∥∥∥∇L(w−,D′)−∇L(w−, D̂′)

∥∥∥. Observe that∥∥∥∇L(w−,D′)−∇L(w−, D̂′)
∥∥∥

=

∥∥∥∥∥∥
∑

i∈[nt−1]

(
∇l(Z′,w−, i)−∇l(Ẑ′,w−, i)

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Z′,w−, i)Z′

i − l′(Ẑ′,w−, i)Ẑ′
i

)∥∥∥∥∥∥
(c)

≤
(∥∥∥ ∑

i∈[nt−1]

(
l′(Z′,w−, i)Z′

i − l′(Ẑ′,w−, i)Z′
i

)∥∥∥ (8)

+
∥∥∥ ∑

i∈[nt−1]

(
l′(Ẑ′,w−, i)Z′

i − l′(Ẑ′,w−, i)Ẑ′
i

)∥∥∥). (9)

where the inequality (c) is due to the Minkowski inequality. Consider Term (8), we have∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Z′,w−, i)Z′

i − l′(Ẑ′,w−, i)Z′
i

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Z′,w−, i)− l′(Ẑ′,w−, i)

)
Z′

i

∥∥∥∥∥∥
=

√√√√√∑
j∈[F]

 ∑
i∈[nt−1]

(
l′(Z′,w−, i)− l′(Ẑ′,w−, i)

)
Z′

ij

2

(a)

≤
√∑

j∈[F]

∑
i∈[nt−1]

(l′(Z′,w−, i)− l′(Ẑ′,w−, i))2
∑

i∈[nt−1]

Z′2
ij , (10)

where (a) is due to the Cauchy-Schwarz inequality. Recalling that l′ is γ1-Lipschitz as stated in the
Assumption 4.1, we derive that ∑

i∈[nt−1]

(l′(Z′,w−, i)− l′(Ẑ′,w−, i))2

≤
∑

i∈[nt−1]

γ2
1

∥∥∥e⊤i Z′w− − e⊤i Ẑ
′w−

∥∥∥2
≤

∑
i∈[nt−1]

γ2
1

∥∥∥e⊤i Z′ − e⊤i Ẑ
′
∥∥∥2 ∥∥w−∥∥2

≤
∥∥w−∥∥2 ∑

i∈[nt−1]

γ2
1

∥∥∥e⊤i Z′ − e⊤i Ẑ
′
∥∥∥2

(a)

≤γ2
1Fϵ21

∥∥w−∥∥2 . (11)
For inequality (a), note that∑

i∈[nt−1]

∥∥∥e⊤i Z′ − e⊤i Ẑ
′
∥∥∥2 ≤ ∑

j∈[F]

∥∥∥Z′ej − Ẑ′ej

∥∥∥2 ≤ Fϵ21,

28

which follows from the assumption that
∥∥∥Z′ej − Ẑ′ej

∥∥∥ ≤ ϵ1 for all j. Since w− = w⋆ + Ĥ−1
w⋆∆,

we have ∥∥w−∥∥ =
∥∥∥w⋆ + Ĥ−1

w⋆∆
∥∥∥ ≤ ∥w⋆∥+

∥∥∥Ĥ−1
w⋆∆

∥∥∥ . (12)

Note that
∥∥∇ℓ(e⊤i Zw, e⊤i Y)

∥∥ ≤ c holds as stated in the Assumption 4.1. Thus,

∥w⋆∥ =

∥∥∥∑i∈[nt]
∇ℓ(e⊤i Ẑw−, e⊤i Y)

∥∥∥
λnt

≤ c

λ
. (13)

Also, following from Lemma E.4, we have
∑

j∈[F]

∑
i∈[nt−1] Z

′2
ij ≤ F . Plugging Inequality (11),

Inequality (12) and Inequality (13) into Inequality (10), we have∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Z′,w−, i)Z′

i − l′(Ẑ′,w−, i)Z′
i

)∥∥∥∥∥∥ ≤ γ1Fϵ1

(c
λ
+
∥∥∥Ĥ−1

w⋆∆
∥∥∥) .

Next, considering Term (9), we have∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Ẑ′,w−, i)Z′

i − l′(Ẑ′,w−, i)Ẑ′
i

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

i∈[nt−1]

l′(Ẑ′,w−, i)
(
Z′

i − Ẑ′
i

)∥∥∥∥∥∥
(a)

≤ c1

∥∥∥∥∥∥
∑

i∈[nt−1]

(
Z′

i − Ẑ′
i

)∥∥∥∥∥∥
(b)

≤c1
√
F (nt − 1)ϵ1,

where Inequality (a) is due to the assumption that ℓ′ ≤ c1 and (b) follows from Lemma E.2 by
substituting D with D′. Therefore, we have∥∥∥∇L(w−,D′)−∇L(w−, D̂′)

∥∥∥
≤γ1ϵ1F

(c
λ
+
∥∥∥Ĥ−1

w⋆∆
∥∥∥)+ c1

√
F (nt − 1)ϵ1. (14)

Next, our focus shifts to analyzing
∥∥∥∇L(w−, D̂′)

∥∥∥. While our approach draws partial inspiration
from the proof of Theorem 1 in (Chien et al., 2022a), it significantly diverges due to the approximation
involved in the embedding matrix. This necessitates a distinct analytical framework. Let Ĝ(w) =

∇L(w, D̂′). Note that Ĝ : Rd → Rd is a vector-valued function. By Taylor’s Theorem, there exists
some η ∈ [0, 1] such that:

Ĝ
(
w−) = Ĝ

(
w⋆ + Ĥ−1

w⋆∆
)
= Ĝ (w⋆) +∇Ĝ

(
w⋆ + ηĤ−1

w⋆∆
)
Ĥ−1

w⋆∆

= Ĝ (w⋆) + Ĥwη
Ĥ−1

w⋆∆

= Ĝ(w⋆) + ∆ + Ĥwη
Ĥ−1

w⋆∆−∆

(a)
= ĤwηĤ

−1
w⋆∆−∆

= (Ĥwη
− Ĥw⋆)Ĥ−1

w⋆∆. (15)

Here, we denote Ĥwη = ∇Ĝ
(
w⋆ + ηĤ−1

w⋆∆
)

with wη = w⋆ + ηĤ−1
w⋆∆. Equality (a) is due to

∆ = ∇L(w⋆, D̂)−∇L(w⋆, D̂′) and w⋆ is the unique minimizer of L(·, D̂). This gives:∥∥∥Ĝ (w−)∥∥∥ =
∥∥∥(Ĥwη

− Ĥw⋆)Ĥ−1
w⋆∆

∥∥∥ ≤ ∥∥∥(Ĥwη
− Ĥw⋆)

∥∥∥∥∥∥Ĥ−1
w⋆∆

∥∥∥ .
29

First, we consider the term
∥∥∥(Ĥwη

− Ĥw⋆)
∥∥∥. Let Z̃ consist of the first nt − 1 rows of Ẑ′, D1 =

diag(l′′(Ẑ′,wη, 1), · · · , l′′(Ẑ′,wη, nt−1)) and D2 = diag(l′′(Ẑ′,w⋆, 1), · · · , l′′(Ẑ′,w⋆, nt−1)).
By the definition, we have

∥∥∥Ĥwη
− Ĥw⋆

∥∥∥
=
∥∥∥∇2L(wη, D̂′)−∇2L(w⋆, D̂′)

∥∥∥
=
∥∥∥Z̃⊤D1Z̃− Z̃⊤D2Z̃

∥∥∥
≤
∥∥∥Z̃⊤

∥∥∥ ∥D1 −D2∥
∥∥∥Z̃∥∥∥ .

Note that
∥∥∥Z̃⊤

∥∥∥∥∥∥Z̃∥∥∥ =
∥∥∥Z̃⊤Z̃

∥∥∥, and the trace of Z̃⊤Z̃ has the following upper bound:

tr(Z̃⊤Z̃) =
∑
j∈[F]

∥∥∥Z̃ej∥∥∥2 ≤ ∑
j∈[F]

(
∥Zej∥+

∥∥∥Ẑej − Zej

∥∥∥)2 ≤ (1 + ϵ1)
2F.

Thus, we have
∥∥∥Z̃⊤Z̃

∥∥∥ ≤ F (1 + ϵ1)
2. Since D1 −D2 is a diagonal matrix, its norm equals the

maximum absolute value of its diagonal elements. Due to the assumption that l′ is γ1-Lipschitz, we
have l′′(Z,w, i) ≤ γ1 for any Z,w, i. Thus, ∥D1 −D2∥ is upper bounded by γ1. Therefore, we
have ∥∥∥Ĥwη

− Ĥw⋆

∥∥∥ ≤ γ1(1 + ϵ1)
2F. (16)

Since L(·, D̂′) is λ(nt−1)-strongly convex, we have
∥∥∥Ĥw⋆

∥∥∥ ≥ λ(nt−1), hence
∥∥∥Ĥ−1

w⋆

∥∥∥ ≤ 1
λ(nt−1) .

Next, we focus on bounding ∆ = ∇L(w⋆, D̂)−∇L(w⋆, D̂′). In the feature unlearning scenario,
we have

∆ = λw⋆ +∇l(Ẑ,w⋆, nt) +
∑

i∈[nt−1]

(
∇l(Ẑ,w⋆, i)−∇l(Ẑ′,w⋆, i)

)
.

By assumption that ∥∇l(Z,w, i)∥ ≤ c and the fact that ∥w⋆∥ ≤ c
λ , we have∥∥∥λw⋆ +∇l(Ẑ,w⋆, nt)

∥∥∥ ≤ 2c. For the last term, we derive that

∥∥∥∥∥∥
∑

i∈[nt−1]

∇l(Ẑ,w⋆, i)−
∑

i∈[nt−1]

∇l(Ẑ′,w⋆, i)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Ẑ,w⋆, i)Ẑi − l′(Ẑ′,w⋆, i)Ẑ′

i

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Ẑ,w⋆, i)Ẑi − l′(Ẑ′,w⋆, i)Ẑi

)∥∥∥∥∥∥ (17)

+

∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Ẑ′,w⋆, i)Ẑi − l′(Ẑ′,w⋆, i)Ẑ′

i

)∥∥∥∥∥∥ . (18)

30

For Term (17), it can be bounded by∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Ẑ,w⋆, i)Ẑi − l′(Ẑ′,w⋆, i)Ẑi

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Ẑ,w⋆, i)− l′(Z,w⋆, i)

)
Ẑi

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

i∈[nt−1]

(l′(Z,w⋆, i)− l′(Z′,w⋆, i)) Ẑi

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

i∈[nt−1]

(
l′(Z′,w⋆, i)− l′(Ẑ′,w⋆, i)

)
Ẑi

∥∥∥∥∥∥ .
For the first term, similar to Term (8), we have∥∥∥∥∥∥

∑
i∈[nt−1]

(
l′(Ẑ,w⋆, i)− l′(Z,w⋆, i)

)
Ẑi

∥∥∥∥∥∥
≤
√∑

j∈[F]

∑
i∈[nt−1]

(l′(Ẑ,w⋆, i)− l′(Z,w⋆, i))2
∑

i∈[nt−1]

Ẑ2
ij ,

and ∑
i∈[nt−1]

(l′(Ẑ,w⋆, i)− l′(Z,w⋆, i))2

≤
∑

i∈[nt−1]

γ2
1

∥∥∥e⊤i Ẑw⋆ − e⊤i Zw
⋆
∥∥∥2

≤
∑

i∈[nt−1]

c2γ2
1

λ2

∥∥∥e⊤i Ẑ− e⊤i Z
∥∥∥2

≤c2γ2
1

λ2
Fϵ21.

To derive the Frobenius norm of Ẑ,
√∑

j∈[F]

∑
i∈[nt−1] Ẑ

2
ij , note that∑

i∈[nt−1]

Ẑ2
ij =

∥∥∥Ẑej∥∥∥2 ≤ (∥Zej∥+ ∥∥∥Ẑej − Zej

∥∥∥)2 = (1 + ϵ1)
2,

which implies that
√∑

j∈[F]

∑
i∈[nt−1] Ẑ

2
ij ≤

√
F (1+ ϵ1). Thus, we have the first term bounded as∥∥∥∥∥∥

∑
i∈[nt−1]

(
l′(Ẑ,w⋆, i)− l′(Z,w⋆, i)

)
Ẑi

∥∥∥∥∥∥ ≤ cγ1
λ

Fϵ1(1 + ϵ1).

The third term is the same as the first term, except that the embedding matrix is replaced by the
updated one. Thus, we have∥∥∥∥∥∥

∑
i∈[nt−1]

(
l′(Z′,w⋆, i)− l′(Ẑ′,w⋆, i)

)
Ẑi

∥∥∥∥∥∥ ≤ cγ1
λ

Fϵ1(1 + ϵ1).

The second term can be derived similarly,∑
i∈[nt−1]

(l′(Z,w⋆, i)− l′(Z′,w⋆, i))2

≤
∑

i∈[nt−1]

c2γ2
1

λ2

∥∥e⊤i Z− e⊤i Z
′∥∥2 .

31

According to Lemma E.3, we derive that∑
i∈[nt−1]

(l′(Z,w⋆, i)− l′(Z′,w⋆, i))2 ≤ c2γ2
1

λ2
Fϵ22.

Therefore, the second term can be bounded as∥∥∥∥∥∥
∑

i∈[nt−1]

(l′(Z,w⋆, i)− l′(Z′,w⋆, i)) Ẑi

∥∥∥∥∥∥ ≤ cγ1
λ

Fϵ2(1 + ϵ1).

Plugging the above results into Term (17), we have∥∥∥∥∥∥
∑

i∈[nt−1]

∇l(Ẑ,w⋆, i)−
∑

i∈[nt−1]

∇l(Ẑ′,w⋆, i)

∥∥∥∥∥∥
≤cγ1

λ
F (1 + ϵ1)(2ϵ1 + ϵ2).

For Term (18), we have∥∥∥∥∥∥
∑

i∈[nt−1]

(
ℓ′(e⊤i Ẑ

′w⋆, e⊤i Y)Ẑi − ℓ′(e⊤i Ẑ
′w⋆, e⊤i Y)Ẑ′

i

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

i∈[nt−1]

ℓ′(e⊤i Ẑ
′w⋆, e⊤i Y)

(
Ẑi − Ẑ′

i

)∥∥∥∥∥∥
(a)

≤ c1

∥∥∥∥∥∥
∑

i∈[nt−1]

(
Ẑi − Ẑ′

i

)∥∥∥∥∥∥
≤c1

∥∥∥∥∥∥
∑

i∈[nt−1]

(
Ẑi − Zi

)∥∥∥∥∥∥
+ c1

∥∥∥∥∥∥
∑

i∈[nt−1]

(
Zi − Z′

i

)∥∥∥∥∥∥+ c1

∥∥∥∥∥∥
∑

i∈[nt−1]

(
Z′

i − Ẑ′
i

)∥∥∥∥∥∥ ,
where (a) is due to the assumption that ℓ′ ≤ c1. Plugging the results of Lemma E.2 and Lemma E.3
into the above inequality, we have

∥∥∥∑i∈[nt−1]

(
ℓ′(e⊤i Ẑ

′w⋆, e⊤i Y)Ẑi − ℓ′(e⊤i Ẑ
′w⋆, e⊤i Y)Ẑ′

i

)∥∥∥ ≤
c1
√
F (nt − 1)(2ϵ1 + ϵ2).

Now we are ready to bound ∆ for feature unlearning scenarios as follows:

∥∆∥ = 2c+
cγ1
λ

F (1 + ϵ1)(2ϵ1 + ϵ2) + c1
√
F (nt − 1)(2ϵ1 + ϵ2).

Consequently, combining the results in Inequality (14) and Inequality (16), we have∥∥∇L(w−,D′)
∥∥

≤γ1ϵ1F
(c
λ
+
∥∥∥Ĥ−1

w⋆∆
∥∥∥)+ c1

√
F (nt − 1)ϵ1 + γ1(1 + ϵ1)

2F
∥∥∥Ĥ−1

w⋆∆
∥∥∥

≤cγ1
λ

Fϵ1 + c1
√
F (nt − 1)ϵ1 +

(
γ1ϵ1F + γ1(1 + ϵ1)

2F
) 1

λ(nt − 1)
∆

(a)

≤ cγ1
λ

Fϵ1 + c1
√
F (nt − 1)ϵ1 + 2γ1F

1

λ(nt − 1)
∆.

Here, we omit the small term (1+ ϵ1) for simplicity. Then (a) follows from γ1ϵ1F ≤ γ1F . Similarly,
∆ can be derived as

∆ ≤ 2c+
(cγ1

λ
F + c1

√
F (nt − 1)

)
(2ϵ1 + ϵ2).

32

Thus, we have∥∥∇L(w−,D′)
∥∥

≤cγ1
λ

Fϵ1 + c1
√
F (nt − 1)ϵ1 +

4cγ1F

λ(nt − 1)

+
2γ1F

λ(nt − 1)

(cγ1
λ

F + c1
√
F (nt − 1)

)
(2ϵ1 + ϵ2)

≤ 4cγ1F

λ(nt − 1)
+
(cγ1

λ
F + c1

√
F (nt − 1)

)(
ϵ1 +

2γ1F

λ(nt − 1)
(2ϵ1 + ϵ2)

)
.

Plugging Lemma E.5 into the above inequality, we have∥∥∇L(w−,D′)
∥∥

≤ 4cγ1F

λ(nt − 1)
+
(cγ1

λ
F + c1

√
F (nt − 1)

)(
ϵ1 +

2γ1F

λ(nt − 1)
(2ϵ1 +

√
d(u))

)
.

Note that c1
√

F (nt − 1) ·
√
d(u) is much larger than 2c, and thus 4cγ1F

λ(nt−1) is much smaller than

c1
√
F (nt − 1) · 2γ1F

λ(nt−1) ·
√
d(u), which is include in the second term. Therefore, we omit 4cγ1F

λ(nt−1)

and adjust by enlarging 2γ1F
λ(nt−1) to 4γ1F

λ(nt−1) for simplicity. Similarly, we omit the 2epsilon1 term and

enlarge
√
d(u) to 2

√
d(u). Finally, we have the upper bound of ∥∇L(w−,D′)∥ as(cγ1
λ

F + c1
√

F (nt − 1)
)(

ϵ1 +
8γ1F

λ(nt − 1)
·
√
d(u)

)
.

E.6 PROOF OF THEOREM 4.3

Theorem. Suppose that Assumption 4.1 holds, and the edge (u, v) is to be unlearned. If ∀j ∈ [F],∥∥∥Ẑej − Zej

∥∥∥ ≤ ϵ1, we can bound ∥∇L(w−,D′)∥ by

4cγ1F

λnt
+
(cγ1

λ
F + c1

√
Fnt

)(
ϵ1 +

4γ1F

λnt
(ϵ1 +

4√
d(u)

+
4√
d(v)

)

)
.

In the proof of Theorem 4.3, we also denote the upper bound of ∥Zej − Z′ej∥ for all j ∈ [F] as ϵ2
before the conclusion is derived.
Lemma E.5. Suppose that edge e = (u, v) is to be removed. Then, we have ∥Zej − Z′ej∥ ≤

4√
d(u)

+ 4√
d(v)

for all j ∈ [F].

Proof. We can derive that
∥∥∥∑i∈[nt]

(
Ẑi − Zi

)∥∥∥ ≤ √Fntϵ1 and
∥∥∥∑i∈[nt]

(Z′
i − Zi)

∥∥∥ ≤ √Fntϵ2

by substituting nt − 1 by nt in the proofs of Lemma E.2 and Lemma E.3. Thus, by plugging the
above results into the proof of Theorem 4.2, we derive that ∥∇L(w−,D′)∥ is less than

γ1ϵ1F

(
c

λ
+

1

nt
∥∆∥

)
+ c1

√
Fntϵ1 + γ1(1 + ϵ1)

2F

∥∥∥∥ 1

nt
∆

∥∥∥∥
In the edge unlearning scenario, we have

∆ =
∑
i∈[nt]

(
∇l(Ẑ,w⋆, i)−∇l(Ẑ′,w⋆, i)

)
.

Similar to the analysis of the third term of ∆ in the proof of Theorem 4.2, we have

∥∆∥ ≤ cγ1
λ

F (1 + ϵ1)(2ϵ1 + ϵ2) + c1
√
Fnt(2ϵ1 + ϵ2).

Plugging Lemma E.5, we derive the upper bound of ∥∇L(w−,D′)∥ as

4cγ1F

λnt
+
(cγ1

λ
F + c1

√
Fnt

)(
ϵ1 +

2γ1F

λnt
(2ϵ1 +

4√
d(u)

+
4√
d(v)

)

)
.

33

E.7 PROOF OF THEOREM 4.4

Theorem. Suppose that Assumption 4.1 holds and the feature of node u is to be unlearned. If
∀j ∈ [F],

∥∥∥Ẑej − Zej

∥∥∥ ≤ ϵ1, we can bound ∥∇L(w−,D′)∥ by

4cγ1F

λ(nt − 1)
+
(cγ1

λ
F + c1

√
F (nt − 1)

)ϵ1 +
2γ1F

λ(nt − 1)
(2ϵ1 + 4

√
d(u) +

∑
w∈N (u)

4√
d(w)

)

 .

Lemma E.6. Suppose that node u is to be removed. Then, for all j ∈ [F], it holds that:

∥Zej − Z′ej∥ ≤ 4
√

d(u) +
∑

w∈N (u)

4√
d(w)

Proof. The node unlearning scenario is identical to the node feature unlearning scenario except for
∥Zej − Z′ej∥. According to the proof of Theorem 4.2, we have∥∥∇L(w−,D′)

∥∥ ≤ 4cγ1F

λ(nt − 1)
+
(cγ1

λ
F + c1

√
F (nt − 1)

)(
ϵ1 + 2γ1F

1

λ(nt − 1)
(2ϵ1 + ϵ2)

)
.

Plugging Lemma E.6 into the above inequality, we derive the conclusion that ∥Zej − Z′ej∥ is
bounded by

4cγ1F

λ(nt − 1)
+
(cγ1

λ
F + c1

√
F (nt − 1)

)ϵ1 +
2γ1F

λ(nt − 1)
(2ϵ1 + 4

√
d(u) +

∑
w∈N (u)

4√
d(w)

)

E.8 PROOF OF LEMMA E.1

Lemma. Suppose that the feature of node u is to be removed. Then, we have ∥Zej − Z′ej∥ ≤
√
d(u)

for all j ∈ [F].

Proof. Let z and z′ be the j-th column of Z and Z′, respectively. Correspondingly, let {r(ℓ)},
0 ≤ t ≤ L are the residues of z. And {r′(ℓ)} denotes the residues after the update operation for
residues but before invoking Algorithm 2 to reduce the error further. Thus, z and z′ shares the same
{q(ℓ)}. First, we consider the difference between z and z′. We have

z− z′ =

L∑
ℓ=0

wℓ

ℓ∑
t=0

D− 1
2 (AD−1)ℓ−t

(
r(ℓ) − r′(ℓ)

)
.

Let ∆r is the difference between r and r′, that is, ∆r(ℓ) = r′(ℓ) − r(ℓ). Note that the node feature
unlearning scenario does not revise the graph structure. Thus, the residues of the neighbors of u and
their neighbors are not updated. Since only r(0)(u) is updated, we have

∥z− z′∥1 ≤
L∑

ℓ=0

|wℓ|D− 1
2 (AD−1)ℓ

∣∣∣∆r(0)(u)
∣∣∣ eu.

Since AD−1 is a left stochastic matrix and D− 1
2 will not increase the result, we derive that

S ≤
L∑

ℓ=0

|wℓ|
∣∣∣∆r(0)(u)

∣∣∣ eu.
Due to the fact that

∑L
ℓ=0 |wℓ| ≤ 1, it can be further bounded by

∣∣∆r(0)(u)
∣∣. As illustrated in

Section 3, r′(0) is modified to −q(0)(u). Note that Equation (1) holds for all settings of rmax. When
rmax = 0, r(0) is a zero vector. Combining Lemma 3.2, we have q(0)(u) = d(u)

1
2x(u). Therefore,∣∣∆r(0)

∣∣ = d(u)
1
2 |x(u)| ≤ d(u)

1
2 due to the fact that x is normalized such that

∥∥∥D 1
2x
∥∥∥
1
≤ 1.

Consequently, we have ∥z− z′∥1 ≤ d(u)
1
2 . Thus, the L2-norm, which is always less than L1-norm,

is bounded by d(u)
1
2 , too. This holds for all j ∈ [F], which completes the proof.

34

E.9 PROOF OF LEMMA E.5

Lemma. Suppose that edge e = (u, v) is to be removed. Then, we have ∥Zej − Z′ej∥ ≤ 4√
d(u)

+

4√
d(v)

for all j ∈ [F].

Proof. Similar to the proof of Lemma E.1, we have

z− z′ =

L∑
ℓ=0

wℓD
− 1

2

(
q(ℓ) +

ℓ∑
t=0

(AD−1)ℓ−tr(t)

)

−
L∑

ℓ=0

wℓD
′− 1

2

(
q(ℓ) +

ℓ∑
t=0

(A′D′−1)ℓ−tr′(t)

)
,

where A′ and D′ are the adjacency matrix and the degree matrix of the graph after the edge removal,
respectively. Let ∆r is the difference between r and r′, that is, ∆r(t) = r′(t) − r(t). Then, we have

z− z′

=

ℓ∑
t=0

wℓ

ℓ∑
t=0

(
D− 1

2 (AD−1)ℓ−tr(t) −D′− 1
2 (A′D′−1)ℓ−t(r(t) +∆r(t))

)
+

L∑
ℓ=0

wℓD
− 1

2 q(ℓ) −
L∑

ℓ=0

wℓD
′− 1

2 q(ℓ)

Note that the above equation holds under all settings of rmax. Thus, we simply set rmax = 0 and then
{r(t)} are a zero vector for 0 ≤ t ≤ L. Therefore, it can be simplified as

z− z′ =

L∑
ℓ=0

wℓ

ℓ∑
t=0

D′− 1
2 (A′D′−1)ℓ−t∆r(t)

+

L∑
ℓ=0

wℓD
− 1

2 q(ℓ) −
L∑

ℓ=0

wℓD
′− 1

2 q(ℓ)

Consider the L1-norm of z− z′. Note that the L1-norm of the first term is upper bounded by

S =

L∑
ℓ=0

|wℓ|
ℓ∑

t=0

∑
i∈[nt]

e⊤i D
′− 1

2 (A′D′−1)ℓ−t
∣∣∣∆r(t)

∣∣∣ ,
where

∣∣∆r(t)
∣∣ represents the vector with the absolute value of each element in ∆r(t). Since A′D′−1

is a left stochastic matrix and D′− 1
2 will not increase the result, we derive that

S ≤
L∑

ℓ=0

|wℓ|
ℓ∑

t=0

∑
i∈[nt]

e⊤i

∣∣∣∆r(t)
∣∣∣ .

Due to the fact that
∑L

ℓ=0 |wℓ| ≤ 1, it can be further bounded by
∑L

t=0

∑
i∈[nt]

e⊤i
∣∣∆r(t)

∣∣, that is,
the sum of the absolute value of r(t) for 0 ≤ t ≤ L. According to Algorithm 3, only the residues of
node u, node v, and their neighbors will be updated. The sum induced by node u can be written as

Su =
(
(d(u) + 1)

1
2 − d(u)

1
2

)
|x(u)|

+

L∑
t=1

∣∣q(t−1)(u)
∣∣

d(u) + 1
+

∑
w∈N (u)

∣∣q(t−1)(u)
∣∣

d(u)(d(u) + 1)
,

where the first term is the decreasement of r(0)(u), the second term is the decreasement of the residues
of v, and the third term is the increase of the residues of the neighbors of u. Note that Su ≤ |x(u)|

2
√

d(u)
+

35

2
d(u)+1

∑L
t=1

∣∣q(t−1)(u)
∣∣ due to the fact that

(
(d(u) + 1)

1
2 − d(u)

1
2

)
= 1√

d(u)+
√

d(u)+1
≤ 1

2
√

d(u)

and the new degree of u is d(u). Note that
∑L

t=1

∣∣q(t−1)(u)
∣∣ ≤ 1 and |x(u)| ≤ 1 since x is

normalized such that
∥∥∥D 1

2x
∥∥∥
1
≤ 1. Thus, we have Su ≤ 1

2
√

d(u)
+ 2

d(u)+1 ≤
3√
d(u)

. Similarly, the

sum induced by node v can be bounded by 1

2
√

d(v)
+ 2

d(v)+1 ≤
3√
d(v)

.

Consider the second term. Only the degree of node u and node v is modified. Thus, we have∥∥∥∥∥
L∑

ℓ=0

wℓD
− 1

2 q(ℓ) −
L∑

ℓ=0

wℓD
′− 1

2 q(ℓ)

∥∥∥∥∥
1

=

L∑
ℓ=0

|wℓ|
(
d(u)−

1
2 − (d(u) + 1)−

1
2

) ∣∣∣q(ℓ)(u)
∣∣∣

+

L∑
ℓ=0

|wℓ|
(
d(v)−

1
2 − (d(v) + 1)−

1
2

) ∣∣∣q(ℓ)(v)
∣∣∣ .

The term
(
d(u)−

1
2 − (d(u) + 1)−

1
2

)
is less than 1/d(u). Thus, the second term is upper bounded

by 1
d(u) +

1
d(v) . Sum up the two terms, we have ∥z− z′∥1 ≤

4√
d(u)

+ 4√
d(v)

. Thus, the L2-norm,

which is always less than L1-norm, is bounded by 4√
d(u)

+ 4√
d(v)

, too. The lemma follows.

E.10 PROOF OF LEMMA E.6

Lemma. Suppose that node u is to be removed. Then, for all j ∈ [F], it holds that:

∥Zej − Z′ej∥ ≤ 4
√

d(u) +
∑

w∈N (u)

4√
d(w)

Proof. Removing a node is equivalent to removing all edges connected to the node. Thus,
∥Zej − Z′ej∥ can be bounded by the sum of the bounds of removing all edges from node u.
Drawing the result from Lemma E.5, the bound induced by removing one single edge can be bounded
by 4√

d(u)
+ 4√

d(w)
. Thus, the total sum is less than 4

√
d(u) +

∑
w∈N (u)

4√
d(w)

by the triangle

inequality. The lemma follows.

E.11 PROOF OF THEOREM 4.5

Theorem. Let R(t) ∈ Rn×F denote the residue matrix at level t, where the j-th column R(t)ej
represents the residue at level t for the j-th feature vector. Let R be defined as the sum

∑L
t=0 R

(t).
Consequently, we can establish the following data-dependent bound:∥∥∇L(w−,D′)

∥∥ ≤2c1 ∥∥1⊤R
∥∥+ γ2

∥∥∥Ẑ′
∥∥∥∥∥∥Ĥ−1

w⋆∆
∥∥∥∥∥∥Ẑ′Ĥ−1

w⋆∆
∥∥∥ .

Proof. As demonstrated in the proof of Theorem 4.2, it is established that∥∥∇L(w−,D′)
∥∥ ≤ ∥∥∥∇L(w−,D′)−∇L(w−, D̂′)

∥∥∥+ ∥∥∥∇L(w−, D̂′)
∥∥∥ .

Initially, the data-dependent bound of the second term
∥∥∥∇L(w−, D̂′)

∥∥∥ can be inferred directly from

Corollary 1 in (Guo et al., 2019), by substituting D′ with D̂′. This leads to the conclusion that∥∥∥∇L(w−, D̂′)
∥∥∥ ≤ γ2

∥∥∥Ẑ′
∥∥∥∥∥∥Ĥ−1

w⋆∆
∥∥∥ ∥∥∥Ẑ′Ĥ−1

w⋆∆
∥∥∥.

Focusing now on the first term.∥∥∥∇L(w−,D′)−∇L(w−, D̂′)
∥∥∥

=
∥∥∥ ∑

i∈[nt]

(
l′(Z′,w−, i)Z′

i − l′(Ẑ′,w−, i)Ẑ′
i

)∥∥∥.
36

Since l′ is bounded by c1, we have∥∥∥ ∑
i∈[nt]

(
l′(Z′,w−, i)Z′

i − l′(Ẑ′,w−, i)Ẑ′
i

)∥∥∥
≤2c1

∥∥∥ ∑
i∈[nt]

(
Z′

i − Ẑ′
i

)∥∥∥
=2c1

√√√√√∑
j∈[F]

∑
i∈[nt]

Z′
ij − Ẑ′

ij

2

. (19)

Let z′ = Z′ej and ẑ′ = Ẑ′ej . According to Equation (1), we have

z′ − ẑ′ =

L∑
ℓ=0

wℓ

ℓ∑
t=0

D− 1
2 (AD−1)ℓ−tr(t).

Given that AD−1 forms a left stochastic matrix, the sum of the entries in r(t) is equivalent to the
sum of entries in (AD−1)ℓ−tr(t). And D− 1

2 will not increase the result. Thus, we have

∑
i∈[nt]

z′i − ẑ′i ≤
L∑

ℓ=0

wℓ

ℓ∑
t=0

1⊤r(t) ≤
L∑

t=0

1⊤r(t),

due to the fact that
∑L

ℓ=0 |wℓ| ≤ 1. Therefore, Term (19) can be bounded by 2c1
∥∥1⊤R

∥∥. This
completes the proof.

E.12 PROOF OF LEMMA E.2 AND LEMMA E.3

We prove these two lemmas directly by the Cauchy-Schwarz inequality. The followings show the
proof of Lemma E.2 and the other can be derived similarly.

Proof. Note that ∥∥∥∥∥∥
∑

i∈[nt−1]

(
Ẑi − Zi

)∥∥∥∥∥∥ =

√√√√√∑
j∈[F]

 ∑
i∈[nt−1]

(Ẑij − Zij)

2

.

With the Cauchy-Schwarz inequality, we derive that√√√√√∑
j∈[F]

 ∑
i∈[nt−1]

(Ẑij − Zij)

2

≤
√∑

j∈[F]

(nt − 1)
∑

i∈[nt−1]

(ẑij − zij)2.

Given that
∥∥∥Ẑej − Zej

∥∥∥ ≤ ϵ1, we have∥∥∥∥∥∥
∑

i∈[nt−1]

(
Ẑi − Zi

)∥∥∥∥∥∥ ≤√F (nt − 1)ϵ1.

37

	Introduction
	Preliminaries
	Lazy Local Propagation
	Scalable and Certifiable Unlearning Mechanism
	Node feature unlearning
	Edge unlearning and node unlearning
	Unlearning algorithm

	Experiments
	Conclusion
	Other Related Works
	Details of Certifiable Unlearning Mechanism
	Practical Aspects
	Details of sequential unlearning algorithm

	Details of Experiments and Additional Experiments
	 Experiments settings.
	More experiments on node feature, edge and node unlearning.
	Parameter Studies.
	Additional Validation of Unlearning Efficacy.
	Apply ScaleGUN to spectral GNNs.

	Details of Lazy Local Propagation Framework
	Differences between ScaleGUN and existing dynamic propagation methods
	Algorithms of Lazy Local Propagation Framework
	Theoretical Analysis of Lazy Local Propagation Framework

	Proofs of Theoretical Results
	Proof of Equation (1) and Lemma 3.2
	Proof of Lemma 3.1
	Proof of Theorem D.1
	Proof of Theorem 3.3
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Lemma E.1
	Proof of Lemma E.5
	Proof of Lemma E.6
	Proof of Theorem 4.5
	Proof of Lemma E.2 and Lemma E.3

