
Optimal Dynamic Subset Sampling: Theory and Applications
[Technical Report]

Lu Yi

yilu@ruc.edu.cn

Renmin University of China

Beijing, China

Hanzhi Wang

hanzhi_wang@ruc.edu.cn

Renmin University of China

Beijing, China

Zhewei Wei
∗

zhewei@ruc.edu.cn

Renmin University of China

Beijing, China

ABSTRACT
We study the fundamental problem of sampling independent events,

called subset sampling. Specifically, consider a set of𝑛 distinct events
𝑆 = {𝑥1, . . . , 𝑥𝑛}, in which each event 𝑥𝑖 has an associated proba-

bility 𝑝 (𝑥𝑖). The subset sampling problem aims to sample a subset

𝑇 ⊆ 𝑆 , such that every 𝑥𝑖 is independently included in𝑇 with prob-

ability 𝑝 (𝑥𝑖). A naive solution is to flip a coin for each event, which

takes 𝑂 (𝑛) time. However, an ideal solution is a data structure that

allows drawing a subset sample in time proportional to the expected

output size 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖), which can be significantly smaller than

𝑛 in many applications. The subset sampling problem serves as an

important building block in many tasks and has been the subject

of various research for more than a decade.

However, the majority of existing subset sampling methods are

designed for a static setting, where the events in set 𝑆 or their asso-

ciated probabilities remain unchanged over time. These algorithms

incur either large query time or update time in a dynamic setting
despite the ubiquitous time-evolving events with varying probabil-

ities in real life. Therefore, it is a pressing need, but still, an open

problem, to design efficient dynamic subset sampling algorithms.

In this paper, we propose ODSS, the first optimal dynamic subset

sampling algorithm. The expected query time and update time of

ODSS are both optimal, matching the lower bounds of the subset

sampling problem. We present a nontrivial theoretical analysis to

demonstrate the superiority of ODSS. We also conduct comprehen-

sive experiments to empirically evaluate the performance of ODSS.

Moreover, we apply ODSS to a concrete application: Influence Max-

imization. We empirically show that our ODSS can improve the

complexities of existing InfluenceMaximization algorithms on large

real-world evolving social networks.

KEYWORDS
subset sampling, dynamic probabilities, optimal time cost

∗
Zhewei Wei is the corresponding author. The work was partially done at Gaoling

School of Artificial Intelligence, Peng Cheng Laboratory, Beijing Key Laboratory of

Big Data Management and Analysis Methods and MOE Key Lab of Data Engineering

and Knowledge Engineering.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599458

ACM Reference Format:
Lu Yi, Hanzhi Wang, and Zhewei Wei. 2023. Optimal Dynamic Subset Sam-

pling: Theory and Applications: [Technical Report]. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3580305.3599458

1 INTRODUCTION
In the past decade, we have been experiencing a huge “Big Data”

movement fueled by our ever-increasing ability and desire to gather,

store, and share data. Driven by the exponential blowup in data

volumes, efficient algorithms are now in higher demand than ever

before. In particular, sampling is one of the most powerful tech-

niques in algorithm design and analysis, which can effectively re-

duce the problem size and is often a necessary tool for achieving

high scalability. On the other hand, randomly chosen samples also

serve as robust estimators for critical quantities in many cases.

In this paper, we study the fundamental problem of sampling

independent events, called Subset Sampling. Specifically, consider
a set 𝑆 with 𝑛 elements 𝑆 = {𝑥1, . . . , 𝑥𝑛}. All of the 𝑛 elements

represent 𝑛 distinct events, each of which (e.g., the 𝑖-th element

𝑥𝑖) is associated with a probability 𝑝 (𝑥𝑖) ∈ [0, 1]. A query for the

subset sampling problem returns a subset 𝑇 ⊆ 𝑆 , in which the 𝑖-th

event 𝑥𝑖 is independently included in 𝑇 with probability 𝑝 (𝑥𝑖). A
trivial bound for the subset sampling problem is𝑂 (𝑛), which can be

achieved by flipping a biased coin for every 𝑝 (𝑥𝑖). However, such
complexity can be significantly larger than the expected output size

𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖), leading to excessive time cost. A well-adopted goal

for the subset sampling problem is to draw a subset sample in time

roughly proportional to the expected output size 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖).
The subset sampling problem has long been a crucial building

block in many tasks. Various applications are in dire need of effi-

cient subset sampling techniques, especially of the implementations

in dynamic settings. To be more specific, in a dynamic setting, the

probability that an event happens can be updated dynamically, and

the elements in set 𝑆 are allowed to be changed over time. Such

dynamic settings are extremely common in real life, as events are

usually time-evolving in practice. Nonetheless, designing dynamic

subset sampling algorithms is a more challenging task due to its

hardness. In the following, we will present three concrete exam-

ples to demonstrate the wide applications of the subset sampling

problem and the dynamic settings of these applications.

1.1 Concrete Applications
Dynamic Influence Maximization. The Influence Maximization

(IM) problem aims to find a set of 𝑘 users in social networks which

can infect the largest number of users in the network. At the heart

ar
X

iv
:2

30
5.

18
78

5v
4

 [
cs

.D
S]

 2
1

Se
p

20
23

https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3580305.3599458
https://doi.org/10.1145/3580305.3599458

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

Table 1: Comparison of subset sampling algorithms.

Algorithm Expected Query Time Update Time

The Naive Method 𝑂 (𝑛) 𝑂 (1)

HybridSS [29] 𝑂

(
1 + 𝑛

√︁
min {𝑝, 1 − 𝑝}

)
𝑂 (𝑛)

BringmannSS [4] 𝑂 (1 + 𝜇) 𝑂

(
log

2 𝑛

)
ODSS (Ours) 𝑂 (1 + 𝜇) 𝑂 (1)

of existing Influence Maximization algorithms is generating ran-

dom reverse reachable (RR) sets efficiently. The state-of-the-art IM

algorithm, SUBSIM [14], reduces the complexity of IM by leverag-

ing a subset sampling approach [4] to accelerate the generation of

RR sets. However, the subset sampling approach can only attain

the optimality in a static setting, presenting a significant drawback

due to its demanding𝑂 (log
2 𝑛) update time when handling update

operations. This complexity poses a substantial obstacle to the prac-

tical application of SUBSIM in real-world scenarios, where social

influence is inherently dynamic. Take, for instance, the rapid surge

in the influence of celebrities resulting from scandals or rumors

within a short span of time. Such fluctuations can swiftly render

the user influence rankings obsolete. Consequently, there exists an

urgent imperative to devise an efficient subset sampling algorithm

specifically tailored for dynamic settings.

Approximate Graph Propagation. In recent Graph Neural Net-

work (GNN) research, an emerging trend is to employ node prox-

imity queries to build scalable GNN models, including prominent

examples such as SGC [34], APPNP [11], PPRGo [2], and GBP [5].

These proximity-based GNNs, in contrast to the original GCN [19],

decouple prediction and propagation and thus enable themini-batch

training, leading to significant enhancements in model scalability.

To model various proximity measures, Wang [32] proposes the

unified graph propagation formulas and introduces a UNIFIED ran-

domized algorithm to calculate the formulas efficiently. Notably,

the algorithm frequently employs subset sampling techniques to

enhance computation efficiency.

Computational Epidemiology. Particle-based simulation models

have become a prevalent choice in the field of computational epi-

demiology [12]. In these models, each infector 𝐼 possesses the ability

to independently infect susceptible individuals who have come into

contact with 𝐼 during a specific time period 𝑇 . Consequently, the

infection process associated with each infector inherently presents

itself as a subset sampling problem.

1.2 Motivations and Contributions
Despite the importance and wide-spread applications of the dy-

namic subset sampling problem, it remains an open problem to

design an optimal dynamic subset sampling algorithm. To be more

specific, it has been established that no subset sampling algorithm

can run faster than Ω(1 + 𝜇), where 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖) denotes the
expected output size of the problem. And handling an update opera-

tion (e.g., inserting/deleting an element or modifying a probability)

takes at least Ω(1) time. This implies that in the scenario of subset

sampling, Ω(1 + 𝜇) and Ω(1) are the lower bounds for query and

update time complexity, respectively. Thus, an optimal dynamic

subset sampling algorithm is required to achieve an 𝑂 (1 + 𝜇) ex-
pected query time per sample with 𝑂 (1) update time per update

operation. In other words, we look for a dynamic subset sampling

algorithm that is able to derive the sampling result in time roughly

proportional to the output size and only requires a constant number

of operations to support real-time updates.

Motivations. The subset sampling problem has been the subject of

extensive research for more than a decade [4, 14, 29]. However, to

the best of our knowledge, none of them can achieve optimality in a

dynamic setting. More specifically, we summarize the complexities

of existing subset sampling algorithms in Table 1. Notably, the

Naive method supports real-time updates, but its drawback lies in

excessive query time, making it inefficient for handling large-scale

datasets. Conversely, the BringmannSS method [4] builds dedicated

index structures to reduce query time. Unfortunately, such index

structures struggle to accommodate dynamic changes, leading to

significant update time. As a consequence, the subset sampling

problem remains open in a dynamic setting despite years of effort.

Contributions. Motivated by the need to design efficient dynamic

subset sampling algorithms, we make the following contributions.

• We propose ODSS, the first optimal dynamic subset sampling

algorithm. We prove that our ODSS only costs𝑂 (1 + 𝜇) expected
query time and supports 𝑂 (1) update time per update opera-

tion. The two complexities are both optimal, matching the lower

bounds of subset sampling.

• We conduct comprehensive experiments to empirically evaluate

the performance of our ODSS. The experimental results show that

our ODSS consistently outperforms all existing subset sampling

algorithms on all datasets.

• To further demonstrate the effectiveness of our ODSS, we apply

our ODSS to a concrete application: Influence Maximization. We

empirically show that our ODSS can improve the complexities of

existing Influence Maximization algorithms on large real-world

evolving social networks.

2 PRELIMINARY
Considering the subset sampling problem, we note that the opti-

mality can be trivially achieved when all probabilities in set 𝑆 are

identical, i.e., 𝑝 (𝑥1) = 𝑝 (𝑥2) = · · · = 𝑝 (𝑥𝑛) = 𝑝 . This is because, in
this special case, the index 𝑗 of the first sampled element follows

the geometric distribution: Pr [𝑗 = 𝑖] = (1 − 𝑝)𝑖−1 · 𝑝 . Given the

memoryless property of geometric distribution, we can iterate the

process of generating 𝑖 ∼ Geo(𝑝) where Geo(𝑝) is the geomet-

ric distribution with parameter 𝑝 , and return 𝑥 𝑗+𝑖 as the second
element sampled in set 𝑆 . We repeat the above process until the

index of the sampled element exceeds 𝑛. It is known that the ran-

dom number 𝑖 ∼ Geo(𝑝) can be generated in 𝑂 (1) time by setting

𝑖 =

⌊
log rand()
log(1−𝑝)

⌋
, where rand() denotes a uniform random num-

ber in [0, 1]. Thus, in this special case, the expected query time

is bounded by 𝑂 (1 + 𝑛𝑝) = 𝑂 (1 + 𝜇) with 𝑂 (1) update time per

update operation [8, 20]. For reference, we call this method the

GeoSS method.

In the general case, a trivial bound of query time complexity is

𝑂 (𝑛) since we can flip a biased coin for every 𝑝 (𝑥𝑖). We call such

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

method the Naive method, which offers an𝑂 (𝑛) query time with an

𝑂 (1) update time per update operation. To further reduce the time

cost, a series of studies have been devoted to this problem over the

past decade. In the following, we will review the state-of-the-art

algorithms and briefly analyze why these methods fall short of

achieving optimality in a dynamic setting.

The HybridSS Method. Tsai et al. [29] propose a subset sampling

method called HybridSS, which achieves 𝑂 (1 + 𝑛
√︁

min{𝑝, 1 − 𝑝})
expected query time with𝑂 (𝑛) update time in the worst case. Here

𝑝 = 1

𝑛

∑𝑛
𝑖=1

𝑝 (𝑥𝑖) denotes the mean of all probabilities. The idea of

the HybridSS method is to divide the original set 𝑆 into two disjoint

sets 𝑋 and 𝑌 , where 𝑋 = {𝑥𝑖 ≤
√
𝑝 | 𝑥𝑖 ∈ 𝑆} and 𝑌 = 𝑆 − 𝑋 . The

HybridSS method invokes the Naive method to sample elements in

set 𝑌 . For the elements in set 𝑋 , the HybridSS method first treats

all probabilities in 𝑋 as

√
𝑝 and applies the GeoSS method in the

special case to sample some candidates. Since 𝑝 (𝑥𝑖) ≤
√
𝑝 for every

𝑥𝑖 ∈ 𝑋 , the HybridSS method then accepts each candidate (e.g., 𝑥𝑖)

with probability
𝑝 (𝑥𝑖)√
𝑝

. By this strategy, every element 𝑥𝑖 in set 𝑋 is

still guaranteed to be included in the final subset𝑇 with probability

√
𝑝 · 𝑝 (𝑥𝑖)√

𝑝
= 𝑝 (𝑥𝑖).

The BringmannSS Method. The BringmannSS method [4] is pro-

posed by Bringmann and Panagiotou, which is the first algorithm

achieving the optimal𝑂 (1+ 𝜇) expected query time complexity in a

static setting. The core of the BringmannSS method is a bucket sort

operation accompanied by the Alias method [30, 31] for weighted

sampling. Here weighted sampling is another crucial sampling

schema that aims to sample an element from a probability distribu-

tion. The Alias method is the state-of-the-art weighted sampling

approach (in a static setting, however), which achieves the opti-

mal 𝑂 (1) time per sample by building a dedicated alias table. The

BringmannSS method revealed an interesting interplay between

the subset sampling problem and the weighted sampling problem.

We describe the BringmannSS method in detail here since our

ODSS is partially inspired by the BringmannSS method. Specifi-

cally, the BringmannSS method first partitions all elements in set

𝑆 into (⌈log𝑛⌉ + 1) buckets. The 𝑘-th bucket (𝑘 = 1, 2, . . . , ⌈log𝑛⌉)
consists of the element 𝑥 of which the associated probability 𝑝 (𝑥) ∈
(2−𝑘 , 2−𝑘+1]. And the last bucket (i.e., the (⌈log𝑛⌉ + 1)-th bucket)

consists of all the elements 𝑥 with 𝑝 (𝑥) < 1

𝑛 . For each element 𝑥

in the 𝑘-th bucket, the BringmannSS method sets 𝑝 (𝑥) = 2
−𝑘+1

,

which is actually an upper bound on 𝑝 (𝑥). As a result, after par-
titioning elements into buckets, all elements 𝑥 ∈ 𝑆 have been

sorted in descending order of 𝑝 (𝑥). The BringmannSS method

further considers the elements ranked in [2𝑘 , 2𝑘+1) as a group,

denoted as 𝐵𝑘 . Then the BringmannSS method invokes the SOTA

weighted sampling method, the Alias method, to find the groups

in which at least one element is sampled. Specifically, starting at

the first group 𝐵1, the BringmannSS method invokes the Alias

method to sample the group index 𝑗 from the probability distribu-

tion Pr [𝑋 = 𝑗] = 𝑞 𝑗 ·Π 𝑗−1

𝑘=1
(1−𝑞𝑘). Here 𝑞𝑘 denotes the probability

that at least one potential element (sampled with probability 𝑝 (𝑥))
is sampled in 𝐵𝑘 (i.e., 𝑞𝑘 = 1 − (1 − 𝑝 (𝑥)) |𝐵𝑘 |). The BringmannSS

method iterates the above process starting at 𝐵 𝑗+1 to sample the

next group until 𝑗 > ⌈log𝑛⌉ + 1. In each sampled group, the Bring-

mannSS method adopts the idea given in the HybridSS method.

That is, we can first sample a candidate 𝑥 with probability 𝑝 (𝑥),
then accept 𝑥 with probability

𝑝 (𝑥)
𝑝 (𝑥) .

The BringmannSS method achieves 𝑂 (1 + 𝜇) expected query

time but incurs an 𝑂 (log
2 𝑛) update time per update operation.

Despite the limitations, the BringmannSS method provides two key

insights for reducing complexity: (i) We can partition the elements

in set 𝑆 into groups and sample them at the group level first. By

such a strategy, we can effectively reduce the problem size. (ii)

There is a rich interplay between different sampling schemas. Some

techniques adopted in other sampling problems may also contribute

to the algorithm design for the subset sampling problem.

Remark. After the acceptance of the conference version of this

paper, we learned of an interesting concurrent algorithm SetSampler

proposed by Bhattacharya et al. [1]. We are pleased to find that the

SetSampler algorithm is somewhat simpler than our ODSS method,

while the (amortized) query time and the update time of SetSampler

are still optimal. Moreover, the SetSampler algorithm was further

applied to the task of fractional (bipartite) matching in [1], which

also demonstrates that the dynamic subset sampling problem is an

important primitive of both theoretical and practical interests.

2.1 Other Related Work
In this subsection, we briefly introduce a useful trick named table
lookup, which is widely adopted in algorithms for weighted sam-

pling [15, 16, 25]. At the heart of the table lookup trick is a table

structure. Each row index refers to a probability distribution, and

cells in a row stores the sampling outcomes corresponding to the

probability distribution. Consider a weighted sampling problem

defined on a finite domain with bounded size of possible probability

distributions. We can first use the given distribution to index into

the table, and uniformly sample a cell in the corresponding row to

derive the sampling outcome. Since all possible outcomes under all

possible probability distributions have been included in the table,

we can achieve the optimal𝑂 (1) query time with𝑂 (1) update time.

3 ALGORITHM
We first propose Basic Dynamic Subset Sampling in Section 3.1. In

Section 3.2, we improve this basic algorithm by the table lookup

method and propose the optimal algorithm Optimal Dynamic Subset
Sampling (ODSS), which achieves the optimal query time and the

optimal update time in the meanwhile.

3.1 Basic Dynamic Subset Sampling
In the basic algorithm, the elements are divided into𝑂 (log𝑛) groups,
ensuring the probabilities of the elements within each group dif-

fer by a factor of at most 2. Rather than querying within each

group, we first perform queries at the group level and subsequently

sample elements within the sampled groups. Note that the group-

level querying itself constitutes a subset sampling problem with

only 𝑂 (log𝑛) elements. By repeating this process iteratively, we

continue to reduce the number of elements until it reaches a con-

stant value, thereby obtaining the basic algorithm. The theoretical

property of the basic algorithm will be analyzed in Section 4.

Group Partitions. We divide all the elements into (⌈log𝑛⌉ + 1)
groups. Define the 𝑘-th group 𝐺𝑘 = {𝑥𝑖 |2−𝑘 < 𝑝 (𝑥𝑖) ≤ 2

−𝑘+1} for

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

𝑘 ∈ {1, . . . , 𝐾 − 1}, and 𝐺𝐾 = {𝑥𝑖 |𝑝 (𝑥𝑖) ≤ 2
−𝐾+1}, 𝐾 = ⌈log𝑛⌉ + 1.

Note that 2
−𝑘+1

is the upper bound on {𝑝 (𝑥𝑖) |𝑥𝑖 ∈ 𝐺𝑘 }. Within

the group 𝐺𝑘 , we first sample elements as candidates with prob-

ability 2
−𝑘+1

and then use rejection for each candidate to yield

a correctly distributed sample. Hence, the probability that there

exists at least one candidate in 𝐺𝑘 can be calculated as 𝑝 (𝐺𝑘) =
1 − (1 − 2

−𝑘+1) |𝐺𝑘 |
. We first sample each group 𝐺𝑘 with probabil-

ity 𝑝 (𝐺𝑘) and then sample elements within each sampled group.

Take the rightmost part of Figure 1 as an example. We divide seven

elements into 𝐾 groups, where 𝐾 = ⌈log𝑛⌉ + 1 = 4. To distinguish

with other symbols, we denote element 𝑥𝑖 as 𝑥
(0)
𝑖

and group 𝐺𝑖 as

𝐺
(0)
𝑖

.𝐺
(0)
𝑘

contains elements with probabilities in

(
2
−𝑘 , 2−𝑘+1

]
for

0 ≤ 𝑘 < 𝐾 . The last group𝐺
(0)
4

contains elements with probabili-

ties less than 2
−3
. After the division, 𝐺

(0)
1
,𝐺
(0)
2
,𝐺
(0)
3
,𝐺
(0)
4

contain

{𝑥 (0)
1
, 𝑥
(0)
4
, 𝑥
(0)
6
}, {𝑥 (0)

7
}, {𝑥 (0)

2
}, {𝑥 (0)

3
, 𝑥
(0)
5
}, respectively.

Sampling within a Group. We first consider the problem of

sampling elements within a group 𝐺𝑘 given that 𝐺𝑘 is sampled.

Let 𝑌𝑘 be an indicator random variable for the event that 𝐺𝑘 is

sampled, that is, Pr [𝑌𝑘 = 1] = 𝑝 (𝐺𝑘). Note that the probability

of each element must be converted to a conditional probability

due to 𝑌𝑘 = 1. We present Algorithm 1 to illustrate the details of

sampling element within a group 𝐺𝑘 conditioned on 𝑌𝑘 = 1. Since

we sample the elements as candidates with probability 2
−𝑘+1

first,

the index𝑋1 of the first candidate in𝐺𝑘 is geometrically distributed.

That is, Pr[𝑋1 = 𝑗] = 2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1
. Then the conditional

probability of the first candidate can be calculated as

Pr[𝑋1 = 𝑗 |𝑌𝑘 = 1] = Pr[𝑋1 = 𝑗 ∩ 𝑌𝑘 = 1]
Pr[𝑌𝑘 = 1]

for 𝑗 ∈ {1, . . . , |𝐺𝑘 |}. Note that Pr[𝑋1 = 𝑗 ∩ 𝑌𝑘 = 1] is the same

as Pr[𝑋1 = 𝑗] since 𝑋1 = 𝑗 implies that 𝐺𝑘 contains at least one

candidate. Thus, Pr[𝑋1 = 𝑗 |𝑌𝑘 = 1] = 2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1/𝑝 (𝐺𝑘).
We generate a random number 𝑟 , distributed as 𝑋1 conditioned

on 𝑌𝑘 = 1, as the index of the first candidate of 𝐺𝑘 (Algorithm 1

Line 3). Subsequently, we proceed to sample the second candidate

from the remaining group members. Note that the sampling of the

second candidate is contingent upon two conditions: (1) 𝑌𝑘 = 1 and

(2) the 𝑟 -th element is selected as the first candidate. Let 𝑋2 be the

index of the second candidate. Then we have Pr[𝑋2 = 𝑗 + 𝑟 |𝑌𝑘 =

1 ∩ 𝑋1 = 𝑟] = Pr[𝑋2 = 𝑗 + 𝑟 |𝑋1 = 𝑟] = 2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1

since 𝑋1 = 𝑟 implies 𝑌𝑘 = 1. Note that 𝑋2 = 𝑗 + 𝑟 is the index

in the whole group, while the index of the second candidate in

the remainder of the group is 𝑗 . Therefore, the index of the second

candidate in the remainder of the group is distributed geometrically.

We generate a new 𝑟 , which is a geometric random variable, and

select the 𝑟 -th element in the remainder of the group as the second

candidate (Algorithm 1 Line 8). Iterate the above process in 𝐺𝑘
to select the further candidates until the index exceeds 𝑛𝑘 = |𝐺𝑘 |.
After sampling the candidates, we accept each candidate 𝑥𝑖 with

probability 𝑝 (𝑥𝑖)/2−𝑘+1. By this strategy, 𝑥𝑖 is still guaranteed to

be sampled with probability 2
−𝑘+1 · 𝑝 (𝑥𝑖)

2
−𝑘+1 = 𝑝 (𝑥𝑖). The theoretical

property of Algorithm 1 will be shown in Lemma 1 in Section 4.

Take the rightmost part of Figure 1 as an example again. Given that

𝐺
(0)
1

is sampled, we query in 𝐺
(0)
1

and obtain a sample 𝑥
(0)
1
, 𝑥
(0)
6

.

Algorithm 1: SampleWithinGroup
Input: a group 𝐺𝑘
Output: a drawn sample 𝑇

1 𝑛𝑘 ← |𝐺𝑘 |, 𝑇 ← ∅, ℎ ← 0;

2 Let 𝐺𝑘 [𝑖] be the 𝑖-th element of 𝐺𝑘 ;

3 Generate a random 𝑟 s.t. Pr[𝑟 = 𝑗] = 2
−𝑘+1 (1−2

−𝑘+1) 𝑗−1

𝑝 (𝐺𝑘) ,

𝑗 ∈ {1, . . . , 𝑛𝑘 };
4 while 𝑟 + ℎ ≤ 𝑛𝑘 do
5 ℎ ← 𝑟 + ℎ;
6 if rand() < 𝑝 (𝐺𝑘 [ℎ])/2−𝑘+1 then
7 𝑇 ← 𝑇 ∪ {𝐺𝑘 [ℎ]} ;
8 Generate a random 𝑟 ∼ Geo(2−𝑘+1);
9 return 𝑇

Since 𝐺
(0)
2
,𝐺
(0)
3
,𝐺
(0)
4

fail to be sampled, we do not query in these

groups and thus no elements in these groups can be sampled.

The Algorithm Structure. Recall that querying at the group level
is also a subset sampling problem with 𝑂 (log𝑛) elements. Each

group 𝐺𝑘 is associated with probability 𝑝 (𝐺𝑘). Partitioning the

groups again can break down this subset sampling problem into

a new subset sampling problem but with 𝑂 (log log𝑛) elements.

Continuing in this manner until the remaining subset sampling

problem is of constant size and hence trivial to solve, we could de-

rive the Basic Dynamic Subset Sampling algorithm as demonstrated

in Algorithm 2. To distinguish the subset sampling problems at

various levels, we denote the set of elements at level ℓ as 𝑆 (ℓ) and
the set of groups at level ℓ as 𝐺 (ℓ) . Let 𝑆 (0) = 𝑆 = {𝑥1, . . . , 𝑥𝑛}.
We first partition 𝑆 (0) into a set of groups𝐺 (0) = {𝐺 (0)

1
, . . . ,𝐺

(0)
𝐾
},

𝐾 = ⌈log𝑛⌉ + 1. The subset sampling problem for𝐺 (0) is defined at

level 1. Let 𝑆 (1) = {𝑥 (1)
1
, . . . , 𝑥

(1)
𝐾
}, 𝑥 (1)

𝑖
with probability 𝑝

(
𝐺
(0)
𝑖

)
.

Thus, a sampled 𝑥
(1)
𝑖

indicates that 𝐺
(0)
𝑖

is sampled. Continuing in

this fashion, we maintain {𝑆ℓ } and {𝐺ℓ }, ℓ ∈ {0, . . . , 𝐿}, until the
size of 𝑆 (𝐿) is a constant, at which 𝐿 = log

∗ 𝑛. For querying, we first

sample each element 𝑥
(𝐿)
𝑘
∈ 𝑆 (𝐿) with probability 𝑝

(
𝑥
(𝐿)
𝑘

)
using

the Naive method and enqueue the sampled elements into 𝑄 (𝐿)

(Algorithm 2 Line 2). Note that each element at level 𝐿 corresponds

to a group at level 𝐿 − 1, and the sampled element 𝑥
(𝐿)
𝑘

indicates

that the group 𝐺
(𝐿−1)
𝑘

is sampled. Thus, for each sampled 𝑥
(𝐿)
𝑘

in

𝑄 (𝐿) , we sample the elements within 𝐺
(𝐿−1)
𝑘

by Algorithm 1 and

thus draw a sample of 𝑆 (𝐿−1)
. Iterating the above process from

level 𝐿 − 1 down to level 1, we finally obtain 𝑄 (0) , a sample of 𝑆 (0) .

3.2 Optimal Dynamic Subset Sampling
Although the basic algorithm described above demonstrates com-

petitive query time, it falls short of meeting the lower bound. To

ensure that the number of elements at level 𝐿 is a constant, we

repeat the reduction log
∗ 𝑛 times. It is remarkable that the number

of groups becomes so small after a constant number of reduction

steps. We present the table lookup method for solving the subset

sampling problem with so few elements. Subsequently, we replace

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

accept
and

..

..

...
...

..

...

Lookup Table

Level 2: Level 1: Level 0:

Group Partition

sample a cell in the -th row

row index

 accept and reject

obtain candidates as indicated by 111

Group Partition

Figure 1: An example of Optimal Dynamic Subset Sampling.

Algorithm 2: BasicDynamicSubsetSampling

Input: the maximum level 𝐿, the set of elements 𝑆 (ℓ) and
the set of groups 𝐺 (ℓ) at level 𝑙 for 0 ≤ ℓ ≤ 𝐿

Output: a drawn sample 𝑇

1 𝑄 (ℓ) ← ∅, 1 ≤ ℓ ≤ 𝐿;
2 Sample each element 𝑥

(𝐿)
𝑘
∈ 𝑆 (𝐿) with the Naive method

and enqueue 𝑥
(𝐿)
𝑘

into 𝑄 (𝐿) if 𝑥 (𝐿)
𝑘

is sampled;

3 for ℓ ← 𝐿 to 1 do
4 while 𝑄 (ℓ) ≠ ∅ do
5 𝑥

(ℓ)
𝑘
← deQueue(𝑄 (ℓ));

6 Enqueue each element in the return of

SampleWithinGroup(𝐺 (ℓ−1)
𝑘

) into 𝑄 (ℓ−1)
;

7 𝑇 ← 𝑄 (0) ;
8 return 𝑇

the Naive method with this table lookup method in the basic algo-

rithm and reduce the reduction steps to 2 times, thereby giving rise

to the Optimal Dynamic Subset Sampling algorithm (ODSS).

Table Lookup. We denote the total number of elements as 𝑚

to differentiate it from the original problem size, denoted as 𝑛.

Consider a set 𝑆 with 𝑚 elements, 𝑆 = {𝑥1, . . . , 𝑥𝑚}. The subset

sampling problem returns a subset of 𝑆 as a drawn sample, that

is, each subset of 𝑆 is chosen as the drawn sample with a certain

probability. We encode each subset of 𝑆 as a bit array 𝐵 with 𝑚

bits. 𝐵 [𝑖] is the 𝑖-th (from right to left) bit indicating if 𝑥𝑖 is in-

cluded in the subset. For instance, when 𝑚 = 3, 𝐵 = {011} rep-
resents a subset {𝑥2, 𝑥1}. Since the elements are independently

included in 𝐵, the probability of 𝐵 being the drawn sample is given

by 𝑝 (𝐵) = ∏
𝑥𝑖 ∈𝐵 𝑝 (𝑥𝑖) ·

∏
𝑥 𝑗∉𝐵 (1 − 𝑝 (𝑥 𝑗)). Notably, the sum of

𝑝 (𝐵) over all distinct subsets 𝐵 ⊆ 𝑆 is equal to 1. An important

observation is that independently sampling each element 𝑥𝑖 with

𝑝 (𝑥𝑖) and then returning the sampled elements is equivalent to

returning a subset 𝐵 with probability 𝑝 (𝐵). Note that the latter is
a weighted sampling problem that is entirely distinct from subset

sampling. The elements of this weighted sampling problem are

subsets of 𝑆 and only one subset is returned as a sample. Based on

this observation, we apply the table lookup trick to solve the subset

sampling problem for a special case, where 𝑝 (𝑥𝑖) ∈ { 1

𝑚 ,
2

𝑚 , . . . ,
𝑚
𝑚 }.

Note that 𝑝 (𝐵) is a multiple of
1

𝑚𝑚 since 𝑝 (𝑥𝑖) is a multiple of
1

𝑚 ,

that is,𝑚𝑚𝑝 (𝐵) ∈ {1, . . . ,𝑚𝑚} for each subset 𝐵 of 𝑆 . We create

a lookup row with𝑚𝑚 entries and fill𝑚𝑚𝑝 (𝐵) entries with 𝐵 for

each subset 𝐵. The𝑚𝑚 entries in the row are all filled with a sub-

set since 𝑝 (𝐵) for all subsets 𝐵 sum up to 1 as mentioned above.

When querying, we select an entry of the row uniformly and return

the subset in the entry. There are𝑚𝑚𝑝 (𝐵) entries filled with the

subset 𝐵, so the probability of returning 𝐵 as a drawn sample is

𝑚𝑚𝑝 (𝐵)/𝑚𝑚 = 𝑝 (𝐵). For a general case without any limitation on

𝑝 (𝑥𝑖), let 𝑝 (𝑥𝑖) = ⌈𝑚𝑝 (𝑥𝑖)⌉/𝑚 for each element 𝑥𝑖 . We maintain

the lookup row with respect to 𝑝 (𝑥𝑖) instead of 𝑝 (𝑥𝑖). Thus, each
entry in the row contains 𝑥𝑖 with probability 𝑝 (𝑥𝑖). Denote the ele-
ments in the subset as candidates. We accept each candidate with

probability 𝑝 (𝑥𝑖)/𝑝 (𝑥𝑖) to ensure that 𝑥𝑖 is sampled with 𝑝 (𝑥𝑖).
Table Lookup for All Possible Distributions. If the probability

of an element 𝑥𝑖 is altered, so too is 𝑝 (𝑥𝑖). To accommodate the mod-

ification, we also construct such a lookup row for each possible dis-

tribution of (𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)). Note that 𝑝 (𝑥𝑖) ∈ { 1

𝑚 , . . . ,
𝑚
𝑚 }, so

there are exactly𝑚𝑚 different distributions of (𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)).
To help with indexing into the table, let

𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) =
𝑚∑︁
𝑖=1

(𝑚𝑝 (𝑥𝑖) − 1)𝑚𝑖−1 .

Note that 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) ∈ {0, . . . ,𝑚𝑚 − 1}. For each distri-

bution of (𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)), we fill in the 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚))-th
row with the sampling outcomes. When querying, we generate a

random 𝑟 uniformly from {0, . . . ,𝑚𝑚 − 1}, and return the subset in

the entry in the 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚))-th row and the 𝑟 -th column.

The Optimal Algorithm Structure. Replacing the Naive method

in the basic algorithm with the table lookup trick, we finally derive

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

Algorithm 3: Optimal Dynamic Subset Sampling

Input: the set of elements 𝑆 (0) , 𝑆 (1) , 𝑆 (2) and the set of

groups 𝐺 (0) ,𝐺 (1) , the table for 𝑆 (2)

Output: a drawn sample 𝑇

1 𝐿 ← 2,𝑇 ← ∅;
2 𝑄 (ℓ) ← ∅, 1 ≤ ℓ ≤ 𝐿;
3 Draw a sample of 𝑆 (2) by the table lookup method and

enqueue the sampled elements into 𝑄 (2) ;
4 The steps are the same as Algorithm 2 Line 3 to 6 with 𝐿 = 2;

5 𝑇 ← 𝑄 (0) ;
6 return 𝑇

the optimal algorithm, Optimal Dynamic Subset Sampling (ODSS).

We provide the pseudocode in Algorithm 3. The subset sampling

problems at level 0 and level 1 are solved by querying within the

sampled groups, while a table is used for querying at level 2. When

querying, we first sample 𝑆 (2) using the table lookupmethod, which

plays a role as the Naive method in the basic algorithm. The remains

of ODSS are the same as Lines 3 to 6 in Algorithm 2, but with 𝐿 = 2.

Figure 1 provides an example of Optimal Dynamic Subset Sam-

pling. There are seven elements 𝑆 = {𝑥1, . . . , 𝑥7}. Let 𝑆 (0) = 𝑆 .

After the group partitions and maintaining the lookup table, we

obtain the structure with three levels. At level 2, we have𝑚 = 3

and 𝑆 (2) =
{
𝑥
(2)
1
, 𝑥
(2)
2
, 𝑥
(2)
3

}
. When querying, we first index into

the 𝐴
(
𝑝
(
𝑥
(2)
1

)
, 𝑝

(
𝑥
(2)
2

)
, 𝑝

(
𝑥
(2)
3

))
-th row. By selecting an entry uni-

formly from𝑚𝑚 entries in the row, we obtain a subset 𝐵 = {111},
which indicates 𝑥

(2)
3
, 𝑥
(2)
2
, 𝑥
(2)
1

are candidates. Then we accept each

candidate 𝑥
(2)
𝑖

with probability 𝑝
(
𝑥
(2)
𝑖

) /
𝑝
(
𝑥
(2)
𝑖

)
. It comes out that

𝑥
(2)
1
, 𝑥
(2)
2

are accepted, which implies that 𝐺
(1)
1
,𝐺
(1)
2

are sampled.

Thus, we query within 𝐺
(1)
1

and 𝐺
(1)
2

using Algorithm 1 and only

𝑥
(1)
1

in 𝐺
(1)
1

is sampled. Then, by querying within 𝐺
(0)
1

, we accept

𝑥
(0)
1
, 𝑥
(0)
6

. Therefore, we draw a sample of 𝑆 , {𝑥1, 𝑥6}.

3.3 Update Operations
In this subsection, we demonstrate how ODSS handles element

insertions, element deletions, and probability modifications. Con-

sider the example of inserting an element 𝑥 with probability 𝑝 (𝑥)
into the set 𝑆 . We start by adding 𝑥 to a group 𝐺

(0)
𝑘

based on 𝑝 (𝑥).
Subsequently, we recalculate the probability 𝑝

(
𝐺
(0)
𝑘

)
for this group.

The modification of 𝑝
(
𝐺
(0)
𝑘

)
may necessitate transferring 𝑥

(1)
𝑘

from

one group at level 1 to another, resulting in modifications of the

probabilities of two groups at level 1. In other words, the probabili-

ties of two elements in 𝑆 (2) are altered. Denote the two elements

at level 2 as 𝑥𝑖 and 𝑥 𝑗 . Denote their new probabilities as 𝑝′ (𝑥𝑖)
and 𝑝′ (𝑥 𝑗),respectively. The row index at level 2 can be revised

by adding (𝑚𝑝′ (𝑥𝑖) −𝑚𝑝 (𝑥𝑖))𝑚𝑖−1 + (𝑚𝑝′ (𝑥 𝑗) −𝑚𝑝 (𝑥 𝑗))𝑚 𝑗−1
to

the previous value 𝐴(𝑝 (𝑥0), . . . , 𝑝 (𝑥𝑚)). This step completes the

insertion of 𝑥𝑖 . Therefore, each element insertion can be solved in

constant time.

Considering an element deletion, we remove the element from

the group it belongs to, which involves a modification of one group

at level 0. Then, we modify the probabilities of two elements at

level 1 and the row index at level 2 with the same techniques as

element insertions. A probability modification can be achieved by

an element insertion following an element deletion. Thus, all kinds

of update operations can be solved in constant time. By maintaining

the data structures correctly, we are able to achieve 𝑂 (𝑛) memory

cost and constant update time in the meanwhile. We defer the

details of the data structures to Appendix A.1.

Take Figure 1 as an example again. We update the set of elements

by inserting 𝑥8 to 𝑆 (0) with 𝑝 (𝑥8) = 0.3. Then, 𝑥8 is assigned to

𝐺
(0)
2

since 2
−2 < 𝑝 (𝑥8) ≤ 2

−1
. The size of𝐺

(0)
2

is enlarged to two

elements, so 𝑝
(
𝐺
(0)
2

)
is revised to 1 − (1 − 2

−1)2 = 3/4. Thus, 𝑥 (1)
2

has to be moved from 𝐺
(1)
2

to 𝐺
(1)
1

. As a result, we have to revise

𝑝
(
𝐺
(1)
1

)
, 𝑝

(
𝐺
(1)
2

)
. Subsequently, at level 2, we recalculate 𝑝 (𝑥1) and

𝑝 (𝑥2), and revise 𝐴(𝑝 (𝑥1), 𝑝 (𝑥2), 𝑝 (𝑥3)) accordingly. Then we are

done with the insertion.

4 THEORETICAL ANALYSIS
In this section, we analyze the theoretical properties of our algo-

rithms. Theorem 1 and Theorem 2 illustrate the correctness and

the expected cost of Basic Dynamic Subset Sampling and Optimal

Dynamic Subset Sampling, respectively.

Our theoretical analysis is conducted under the standard word

RAMmodel proposed by Fredman et al. [10]. The word RAMmodel

is a commonly adopted computational model which offers a simple

yet accurate abstraction of real-world computers. In particular, we

will assume that any basic arithmetical operations on a single word

of log𝑛 bits take constant time, where 𝑛 matches the problem size.

The basic arithmetical operations include addition, multiplication,

comparison, logical shifts, exp(𝑥), and log(𝑥) (the binary logarithm
of𝑥). The operation rand() (to generate a randomnumber uniformly

from [0, 1]) takes constant time, too.

Theorem 1 (Basic Dynamic Subset Sampling). Using Algo-
rithm 2, a subset sampling problem with 𝑛 elements can be solved
in 𝑂 (2log

∗ 𝑛 · 𝜇 + 2
log
∗ 𝑛 + log

∗ 𝑛) expected query time, 𝑂 (𝑛 log
∗ 𝑛)

preprocessing time, and 𝑂 (𝑛 log
∗ 𝑛) space.

Theorem 2. Using Algorithm 3, a subset sampling problem with 𝑛
elements can be solved in 𝑂 (1 + 𝜇) query time, constant update time,
𝑂 (𝑛) preprocessing time, and 𝑂 (𝑛) space.

To prove Theorem 1 and Theorem 2, we need the help of the

following lemmas. For the sake of readability, we defer all proofs

to Appendix B.1 – B.5.

Lemma 1. Given that a group 𝐺𝑘 = {𝑥𝑖 |2−𝑘 < 𝑝 (𝑥𝑖) ≤ 2
−𝑘+1}

for 1 ≤ 𝑘 < 𝐾 is successfully sampled with probability 𝑝 (𝐺𝑘) =
1− (1− 2

−𝑘+1)𝑛𝑘 , Algorithm 1 returns a sample𝑇 of𝐺𝑘 in𝑂 (𝜇𝑘 + 1)
expected query time, where𝐾 = ⌈log𝑛⌉ +1, 𝜇𝑘 =

∑
𝑥𝑖 ∈𝐺𝑘

𝑝 (𝑥𝑖), 𝑛𝑘 =

|𝐺𝑘 | ≤ 𝑛. Each element 𝑥𝑖 ∈ 𝐺𝑘 is included in 𝑇 independently with
probability 𝑝 (𝑥𝑖). A similar conclusion holds for 𝐺𝐾 = {𝑥𝑖 |𝑝 (𝑥𝑖) ≤
2
−𝐾+1}.

Lemma 2. Let 𝜇 =
∑𝑛
𝑖=1

𝑝 (𝑥𝑖). Denote the sum of the probabilities
for all elements in level ℓ as 𝜇 (ℓ) . We have

𝜇 (ℓ) ≤ 2
ℓ𝜇 + 2

ℓ − 1. (1)

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Lemma 3. With the table lookup method, the subset sampling
problem with 𝑆 = {𝑥1, . . . , 𝑥𝑚} can be solved with 𝑂 (1 + 𝜇) query
time, 𝑂 (2𝑚 ·𝑚 +𝑚2𝑚) preprocessing time, and 𝑂 (𝑚2𝑚) space.

5 EXPERIMENTS
In this section, we experimentally evaluate the performance of

our ODSS against alternatives. Before the evaluation, we test the

correctness of all algorithms through experiments, the results of

which are deferred to Appendix A.2.

Environment. We conduct all experiments on a machine with

an Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz CPU and 1007GB

memory in Linux OS. All the methods are implemented in C++ and

compiled by g++ with -O3 optimization.

Competitors. We compared our ODSS against the Naive method,

the HybridSS method, and the BringmannSS method. For each

method, we report the average time of 100 queries as the query

time, the average time of 10
5
insertions and 10

5
deletions as the

update time.

The Distributions of Probabilities. To examine the effective-

ness of our ODSS, we carefully set the probabilities of elements

distributed with different skewnesses. In particular, we choose the

normal distribution, the half-normal distribution, the exponential

distribution, and the log-normal distribution as the probability dis-

tribution of the elements. The normal distribution is a symmetric

distribution with skewness as 0. We set the mean of the normal

distribution as 0 and the variance as 10. For the half-normal distribu-

tion, the probability density function (PDF) is 𝑓 (𝑥) =
√

2

𝜎𝜋 exp

(
− 𝑥2

2𝜎2

)
and the skewness of it is just below 1. We set the 𝜎2

as 10 for it.

For the exponential distribution, the PDF is 𝑓 (𝑥) = 𝜆𝑒−𝜆𝑥 with the

skewness as 2, and we set 𝜆 = 1. For the log-normal distribution,

the PDF is 𝑓 (𝑥) = 1

𝑥𝜎
√

2𝜋
· exp

(
− (ln𝑥−𝜇)

2

2𝜎2

)
. By setting 𝜇 = 0 and

𝜎 =
√

ln 2, the skewness of the log-normal distribution is 4. To gen-

erate the probabilities of elements, we first sample a value for each

element with the distribution settings. To ensure that each value

is greater than 0, we subtract the minimum of all the generated

values from each value. Then we re-scale the range of the values to

[0, 1] and re-scale the sum of them to a specified 𝜇 according to the

needs of various experiments.

Query Time v.s. Update Time. In light of the pressing needs

for simultaneously achieving sample and update efficiency in the

subset sampling problem, we draw the trade-off plots between

query time and update time of each method in Figure 2. We set the

number of elements 𝑛 = 10
5
, and the sum of the probabilities is

𝜇 = 1. From Figure 2, we observe that ODSS consistently achieves

the best of both query time and update time on all datasets. The

Naive method performs efficient updates, while it requires a large

query time, which is 1000× slower than ODSS. The query time of

the BringmannSS method and the HybridSS method is significantly

smaller than the Naive method, while the update time is 100×, 10
4×

larger than our ODSS, respectively. These results concur with our

analysis for query time and update time. For update time, the Naive

method and ODSS are the best with only 𝑂 (1) time per element

insertion/deletion, while the BringmannSS method needs𝑂 (log
2 𝑛)

time and the HybridSS methods need 𝑂 (𝑛) time. For query time,

the BringmannSS method, and our ODSS are the best with𝑂 (1+ 𝜇)

time. The HybridSS method needs 𝑂

(
1 + 𝑛

√︁
min {𝑝, 1 − 𝑝}

)
query

time, and the mean of the probabilities 𝑝 is so small here, and thus

the HybridSS performs better than the Naive method, which needs

𝑂 (𝑛) time in any case.

Effectiveness of Queries. To further examine the query time

of these algorithms, we vary 𝜇, the sum of the probabilities of

elements, and show the query time in Figure 3. We set 𝑛 = 10
6
, and

vary 𝜇 in {1, 10, 10
2, 10

3, 10
4, 10

5, 10
6}. From Figure 3, we observe

that with the increase of 𝜇, the query time of all algorithms except

the Naive method becomes larger. This concurs with the theoretical

analysis that the query time of the BringmannSS method and ODSS

is 𝑂 (1 + 𝜇), and the increase of the mean 𝑝 of the probabilities

incurs the increase of the query time of the HybridSS method.

Additionally, we note that when 𝜇 = 𝑛 = 10
6
, the query time of the

BringmannSS method is larger than that of the Naive method due

to the complicated index structure. ODSS costs the least query time

with any 𝜇 in this experiment.

Effectiveness of Updates. To further examine the update time of

these algorithms, we set 𝜇 = 1 and vary 𝑛 in {10
6, 5 × 10

6, 10
7, 5 ×

10
7, 10

8, 5 × 10
8, 10

9}. Figure 4 shows the update time of the algo-

rithms on the four distributions. We observe that the Naive method

and ODSS consistently outperform other algorithms on all the distri-

butions. The update time of the BringmannSS method is 10× ∼ 50×
larger than that of the Naive method and our ODSS. The update

time has little change with the increase of 𝑛 since the 𝑂 (log
2 𝑛)

term increases mildly when 𝑛 varies from 10
6
to 10

9
. The update of

the HybridSS method becomes slower with the increase of 𝑛, which

concurs with its update time complexity 𝑂 (𝑛).

6 EMPIRICAL STUDY
In this section, we apply our ODSS to a concrete application: In-

fluence Maximization (IM) of evolving graphs. We will first briefly

introduce the IM problem and the dynamic IM problem as follows.

With the rapid growth of online social networks, the study of

information diffusion in networks has garnered significant atten-

tion. Among the various research areas in information diffusion,

Influence Maximization (IM) has emerged as a critical problem

with practical applications in viral marketing [9], network monitor-

ing [21], and social recommendation [35]. The objective of IM is to

identify a set of seed users in a social network that can maximize

the spread of influence.

In this context, we consider a social graph G = (V, E), whereV
represents the set of nodes and E represents the set of edges. Each

edge 𝑒 = (𝑢, 𝑣) ∈ E is associated with a propagation probability

𝑝 (𝑢, 𝑣) ∈ [0, 1]. To capture the stochastic process of influence dif-
fusion on G, we define a specific diffusion modelM. The influence
spread of a set of nodes 𝑆 , denoted as 𝜎G,M (𝑆), is the expected

number of users influenced by 𝑆 under the diffusion modelM.

Definition 1 (Influence Maximization [18]). Given a graph
G, a diffusion modelM, and a positive integer 𝑘 , the Influence Max-
imization problem aims to select a set 𝑆𝑘 of 𝑘 nodes from G as
the seed set to maximize the influence spread 𝜎G,𝑀 (𝑆𝑘), i.e., 𝑆𝑘 =

arg max𝑆 : |𝑆 | ≤𝑘 𝜎G,M (𝑆).

The IC Model. In this work, we focus on a widely adopted model,

the Independent Cascade (IC) model. Under the IC model, a seed set

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

10−5 10−4 10−3

query time (s)

10−7

10−6

10−5

10−4

10−3

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

Normal distribution

10−5 10−4 10−3

query time (s)

10−7

10−6

10−5

10−4

10−3

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

Half-normal distribution

10−5 10−4 10−3

query time (s)

10−7

10−6

10−5

10−4

10−3

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

Exponential distribution

10−5 10−4 10−3

query time (s)

10−7

10−6

10−5

10−4

10−3

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

Log-normal distribution

Figure 2: Query time v.s. update time overhead on distributions with different skewnesses. (𝑛 = 10
5, 𝜇 = 1)

1 101 102 103 104 105 106

μ

10−6

10−5

10−4

10−3

10−2

qu
er

y
tim

e
(s

)

Normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

1 101 102 103 104 105 106

μ

10−6

10−5

10−4

10−3

10−2

qu
er

y
tim

e
(s

)

Half-normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

1 101 102 103 104 105 106

μ

10−6

10−5

10−4

10−3

10−2

qu
er

y
tim

e
(s

)

Exponential distribution

NaiveSS
BringmannSS
HybridSS
ODSS

1 101 102 103 104 105 106

μ

10−6

10−5

10−4

10−3

10−2

qu
er

y
tim

e
(s

)

Log-normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

Figure 3: Varying 𝜇: query time (s) on distributions with different skewnesses. (𝑛 = 10
6)

106 5 × 106 107 5 × 107 108 5 × 108 109

n

10−6

10−4

10−2

100

up
da

te
 ti

m
e

(s
)

Normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

106 5 × 106 107 5 × 107 108 5 × 108 109

n

10−6

10−4

10−2

100

up
da

te
 ti

m
e

(s
)

Half-normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

106 5 × 106 107 5 × 107 108 5 × 108 109

n

10−6

10−4

10−2

100

up
da

te
 ti

m
e

(s
)

Exponential distribution

NaiveSS
BringmannSS
HybridSS
ODSS

106 5 × 106 107 5 × 107 108 5 × 108 109

n

10−6

10−4

10−2

100

up
da

te
 ti

m
e

(s
)

Log-normal distribution

NaiveSS
BringmannSS
HybridSS
ODSS

Figure 4: Varying 𝑛: update time (s) on distributions with different skewnesses.

𝑆 ∈ V spreads its influence as follows. At timestep 0, all nodes in

𝑆 are activated. Each node 𝑢 that is activated at timestep 𝑡 − 1 has

only ONE chance to activate each of its inactive outgoing neighbors

𝑣 with probability 𝑝 (𝑢, 𝑣). After the time step 𝑡 , 𝑢 stays active and

do not activate any nodes again. The spreading process terminates

when no more active nodes can activate other nodes. We observe

that the process by which an active node 𝑢 activates its outgoing

neighbors is exactly a subset sampling problem. Each outgoing

neighbor 𝑣 of 𝑢 is independently sampled with probability 𝑝 (𝑢, 𝑣).
Static IM. It has been proved that IM is NP-hard under the Inde-

pendent Cascade (IC) model [18]. Due to the theoretical hardness

of IM, extensive research has tried to design efficient IM algorithms

for a few decades. According to [23], the existing algorithms can

be classified into three categories: the sketch-based [3, 27, 28] so-

lutions, the simulation-based solutions [13, 18, 21, 33, 36], and the

proxy-based solutions [6, 7, 17, 24]. The sketch-based solution and

the simulation-based solution both solve a huge number of subset

sampling problems.

Dynamic IM. Considering the highly dynamic nature of social

influence, the dynamic IM problem has received much attention in

the past decade. Dynamic IM hopes to support real-time influential

users tracking on evolving social networks. According to Peng [26],

in the fully dynamic network model where users can join in or leave

the networks, no algorithms can achieve any meaningful approxi-

mation guarantee. That is, re-running an IM algorithm upon each

Table 2: Datasets.

Dataset 𝒏 𝒎 𝒎/𝒏

Orkut-Links 3, 072, 441 117, 185, 083 38

Twitter 41, 652, 230 1, 468, 365, 182 35

update can achieve the lower bound of the running time. However,

the existing static IM algorithms focus on static social networks and

do not support evolving networks. This motivates us that by replac-

ing the subset sampling module in the static IM algorithms with the

structure of ODSS, we can obtain a new dynamic IM algorithm for

the fully dynamic model. The query time of each subset sampling

problem in the new IM algorithm is reduced to𝑂 (1+𝜇). Meanwhile,

since our ODSS costs𝑂 (1) time for each update operation, the new

IM algorithms can support insertions/deletions of user nodes or

modifications of propagation probabilities in constant time.

In the following, we will apply our ODSS and alternatives to

static RR-sketch solutions to obtain new dynamic IM algorithms

for the fully dynamic model in Section 6.1. We also examine how

our ODSS improves the complexities of simulation-based solutions.

Due to the simplicity of the simulation-based solutions, we defer

the details in Appendix A.3.

6.1 Applying ODSS to RR-Sketch Solutions
The Reverse Reachable Sketch (RR-Sketch) solutions are the current

mainstream of the sketch-based solutions for IM [3, 23, 28]. The

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

1 10 50 100 200 500 1000 1500 2000
k

3 × 100

101

5 × 101

ru
nn

in
g

tim
e

(s
)

OL - Exponential distribution

IM_NaiveSS
IM_BringmannSS
IM_HybridSS
IM_ODSS

1 10 50 100 200 500 1000 1500 2000
k

2 × 100

101

5 × 101

ru
nn

in
g

tim
e

(s
)

OL - Weibull distribution
IM_NaiveSS
IM_BringmannSS
IM_HybridSS
IM_ODSS

1 10 50 100 200 500 1000 1500 2000
k

100

101

6 × 101

ru
nn

in
g

tim
e

(s
)

TW - Exponential distribution
IM_NaiveSS
IM_BringmannSS
IM_HybridSS
IM_ODSS

1 10 50 100 200 500 1000 1500 2000
k

5 × 10−1

100

101

5 × 101

ru
nn

in
g

tim
e

(s
)

TW - Weibull distribution
IM_NaiveSS
IM_BringmannSS
IM_HybridSS
IM_ODSS

Figure 5: Running time of dynamic IM algorithms based on various subset sampling structures.

IM_NaiveSS
IM_BringmannSS

IM_HybridSS
IM_ODSS2 × 10−6

10−5

up
da

te
 ti

m
e

(s
)

OL - Exponential distribution

IM_NaiveSS
IM_BringmannSS

IM_HybridSS
IM_ODSS2 × 10−6

10−5

up
da

te
 ti

m
e

(s
)

OL - Weibull distribution

IM_NaiveSS
IM_BringmannSS

IM_HybridSS
IM_ODSS10−6

10−5

up
da

te
 ti

m
e

(s
)

TW - Exponential distribution

IM_NaiveSS
IM_BringmannSS

IM_HybridSS
IM_ODSS10−6

10−5

up
da

te
 ti

m
e

(s
)

TW - Weibull distribution

Figure 6: Update time of dynamic IM algorithms based on various subset sampling structures.

solutions are based on the concept of random Reverse Reachable
(RR) set. Generating a random RR set starts at a uniformly selected

node 𝑠 from V . At timestep 0, 𝑠 is activated. Each node 𝑣 that is

activated at timestep 𝑡 − 1 tries to reversely activate each ingoing

neighbor 𝑢 with probability 𝑝 (𝑢, 𝑣) at timestep 𝑡 . After timestep

𝑡 , 𝑣 stays active and no longer activates any nodes. The process

ends when no more nodes can be reversely activated. The set of

the active nodes is a random RR set, denoted as 𝑅. The activation is

a subset sampling problem with the ingoing neighbors of a node as

elements. After generating a sufficient number of random RR sets,

a greedy algorithm is applied to select a seed set [3].

We notice that Guo et al. [14] propose a framework called SUB-

SIM (Subset Sampling with Influence Maximization). SUBSIM mod-

ifies the subset sampling module of the algorithm OPIM-C [27] and

thus accelerates the generation of random RR sets. However, SUB-

SIM focuses on static IM problems and can not support the evolving

graphs. Motivated by SUBSIM, we can obtain various dynamic IM

algorithms for the fully dynamic model by replacing the subset

sampling module with various dynamic subset sampling structures

(our ODSS and alternatives). We conduct experiments for these

dynamic IM algorithms to evaluate the running time for IM and

the update time for edge insertions/deletions.

The experiments are conducted on two real-world graphs, Orkut-

Links (OL) and Twitter (TW). The two graphs are publicly available

at [22].We give the summary of the two graphs in Table 2. Following

previous studies [14, 27], we test the case when the probabilities

of edges follow two skewed distributions: exponential distribution

and Weibull distribution. For exponential distribution, We set 𝜆 = 1.

For Weibull distribution, the PDF is 𝑓 (𝑥) = 𝑎
𝑏
· (𝑥
𝑏
) (𝑎−1) · 𝑒−(𝑥/𝑏)𝑎 .

The parameters 𝑎 and 𝑏 are drawn uniformly from [0, 10] for each
edge. For each node, the sum of the probabilities of its outgoing

neighbors is scaled to 1.

To fully explore the efficiency of the algorithms, we vary the

size 𝑘 of the seed set in {1, 10, 50, 100, 200, 500, 1000, 2000} in the

experiments. We repeat each IM algorithm to generate the seed

set 5 times and report the average running time. To simulate the

evolution of social networks, we uniformly choose 10
6
edges from

each graph and report the average time for the insertions and dele-

tions of these 10
6
edges. Figure 5 presents the running time of the

dynamic IM algorithms based on various subset sampling struc-

tures. IM_ODSS, the IM algorithm based on our ODSS, outperforms

alternatives in all tested graphs and all seed sizes. In particular, the

running time of IM_ODSS is 10× smaller than the IM_NaiveSS on

the TW graph when 𝑘 ≥ 500. Figure 6 presents the update time of

the algorithms. IM_ODSS performs per update in less than 4× 10
−6

s. IM_BringmanSS and IM_HybridSS both suffer the long update

time. In particular, IM_HybridSS is 10× slower than IM_ODSS on

the TW graph.

7 CONCLUSION
Subset sampling is a fundamental problem in both data mining

and theoretical computer science. Its dynamic version finds various

applications in Influence Maximization, Graph Neural Networks,

and Computational Epidemiology. This paper proposes ODSS, the

first optimal dynamic subset sampling algorithm. We present a the-

oretical analysis to demonstrate the optimal complexities of ODSS.

We also conduct extensive experiments to evaluate the performance

of ODSS and give an empirical study on Influence Maximization.

REFERENCES
[1] Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. Near-optimal

dynamic rounding of fractional matchings in bipartite graphs. arXiv preprint
arXiv:2306.11828, 2023.

[2] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling

graph neural networks with approximate pagerank. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2464–2473, 2020.

[3] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maxi-

mizing social influence in nearly optimal time. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms, pages 946–957. SIAM, 2014.

[4] Karl Bringmann and Konstantinos Panagiotou. Efficient sampling methods for

discrete distributions. In International colloquium on automata, languages, and
programming, pages 133–144. Springer, 2012.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

[5] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 1029–1038, 2010.

[6] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social

networks. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 199–208, 2009.

[7] Suqi Cheng, Huawei Shen, Junming Huang, Wei Chen, and Xueqi Cheng. Imrank:

influence maximization via finding self-consistent ranking. In Proceedings of the
37th international ACM SIGIR conference on Research & development in information
retrieval, pages 475–484, 2014.

[8] Luc Devroye. Nonuniform random variate generation. Handbooks in operations
research and management science, 13:83–121, 2006.

[9] Pedro Domingos and Matt Richardson. Mining the network value of customers.

In Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 57–66, 2001.

[10] Michael L Fredman and Dan E Willard. Surpassing the information theoretic

bound with fusion trees. Journal of computer and system sciences, 47(3):424–436,
1993.

[11] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict

then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997, 2018.

[12] Timothy C Germann, Kai Kadau, Ira M Longini Jr, and Catherine A Macken.

Mitigation strategies for pandemic influenza in the united states. Proceedings of
the National Academy of Sciences, 103(15):5935–5940, 2006.

[13] Amit Goyal, Wei Lu, and Laks VS Lakshmanan. Celf++ optimizing the greedy

algorithm for influence maximization in social networks. In Proceedings of the
20th international conference companion on World wide web, pages 47–48, 2011.

[14] Qintian Guo, Sibo Wang, Zhewei Wei, and Ming Chen. Influence maximization

revisited: Efficient reverse reachable set generation with bound tightened. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data, pages 2167–2181, 2020.

[15] Torben Hagerup, Kurt Mehlhorn, and J Ian Munro. Maintaining discrete probabil-

ity distributions optimally. In International Colloquium on Automata, Languages,
and Programming, pages 253–264. Springer, 1993.

[16] Torben Hagerup, Kurt Mehlhorn, and James Ian Munro. Optimal algorithms for

generating discrete random variables with changing distributions. Lecture Notes
in Computer Science, 700:253–264, 1993.

[17] Kyomin Jung, Wooram Heo, and Wei Chen. Irie: Scalable and robust influence

maximization in social networks. In 2012 IEEE 12th international conference on
data mining, pages 918–923. IEEE, 2012.

[18] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 137–146, 2003.

[19] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
[20] Donald Knuth. Seminumerical algorithms. The art of computer programming, 2,

1981.

[21] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. Cost-effective outbreak detection in networks.

In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 420–429, 2007.

[22] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[23] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence maximization on

social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering,
30(10):1852–1872, 2018.

[24] Qi Liu, Biao Xiang, Enhong Chen, Hui Xiong, Fangshuang Tang, and Jeffrey Xu

Yu. Influence maximization over large-scale social networks: A bounded linear

approach. In Proceedings of the 23rd ACM international conference on conference
on information and knowledge management, pages 171–180, 2014.

[25] Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. Dynamic generation of

discrete random variates. Theory of Computing Systems, 36:329–358, 2003.
[26] Binghui Peng. Dynamic influence maximization. Advances in Neural Information

Processing Systems, 34:10718–10731, 2021.
[27] Jing Tang, Xueyan Tang, Xiaokui Xiao, and Junsong Yuan. Online processing

algorithms for influence maximization. In Proceedings of the 2018 International
Conference on Management of Data, pages 991–1005, 2018.

[28] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: Near-

optimal time complexity meets practical efficiency. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data, pages 75–86, 2014.

[29] Meng-Tsung Tsai, Da-Wei Wang, Churn-Jung Liau, and Tsan-sheng Hsu. Het-

erogeneous subset sampling. In Computing and Combinatorics: 16th Annual
International Conference, COCOON 2010, Nha Trang, Vietnam, July 19-21, 2010.
Proceedings 16, pages 500–509. Springer, 2010.

[30] Alastair J Walker. New fast method for generating discrete random numbers

with arbitrary frequency distributions. Electronics Letters, 8(10):127–128, 1974.
[31] Alastair J Walker. An efficient method for generating discrete random variables

with general distributions. ACM Transactions on Mathematical Software (TOMS),
3(3):253–256, 1977.

[32] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and

Ji-Rong Wen. Approximate graph propagation. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1686–1696,
2021.

[33] Yu Wang, Gao Cong, Guojie Song, and Kunqing Xie. Community-based greedy

algorithm for mining top-k influential nodes in mobile social networks. In

Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1039–1048, 2010.

[34] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. Simplifying graph convolutional networks. In International confer-
ence on machine learning, pages 6861–6871. PMLR, 2019.

[35] Mao Ye, Xingjie Liu, and Wang-Chien Lee. Exploring social influence for recom-

mendation: a generative model approach. In Proceedings of the 35th international
ACM SIGIR conference on Research and development in information retrieval, pages
671–680, 2012.

[36] Chuan Zhou, Peng Zhang, Wenyu Zang, and Li Guo. On the upper bounds of

spread for greedy algorithms in social network influence maximization. IEEE
Transactions on Knowledge and Data Engineering, 27(10):2770–2783, 2015.

http://snap.stanford.edu/data

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A SUPPLEMENTARY EXPERIMENTS
A.1 Implementation Details
Maintaining Arrays for Groups. To achieve the update opera-
tions, we maintain an array for each group so that accessing the

element at a specified location can be done in constant time.We also

maintain an array for storing the group index 𝑘 and the position

𝑗 for each element 𝑥𝑖 , indicating that 𝑥𝑖 is the 𝑗-th element in 𝐺𝑘 .

Let Gidx(𝑥𝑖) be the group index of 𝑥𝑖 and Gpos(𝑥𝑖) be the position
of 𝑥𝑖 in the group. When inserting an element into a group, we

append it to the end of the array. When it comes to deletion, we

remove 𝑥𝑖 from the Gidx(𝑥𝑖)-th group by replacing the value at

position Gpos(𝑥𝑖) with the value at the last position in the group

and then delete the last cell. That is, we move the last element to

the position of 𝑥𝑖 , and then the array contracts by one cell. Conse-

quently, the insertion or deletion of an element within a group can

be accomplished in constant time. Note that each update operation

can be resolved into a constant number of element insertions or

deletions within a group. Consequently, every update operation

can be performed in constant time. The memory cost of a group is

directly proportional to the number of elements it contains. Conse-

quently, the memory cost of level 0 is 𝑂 (𝑛) and the memory cost

of level 1 is 𝑂 (log𝑛).
Maintaining Dynamic Arrays. Note that the size of each group

will grow and shrink with insertions and deletions of elements

within the group. To support the changes of the groups and bound

the total memory in the meantime, we can implement the arrays

using the doubling technique. Specifically, for each array 𝐴, we

maintain an additional array 𝐴+. Denote the size of 𝐴 as 𝑐 , initially

𝑐 = 2. Let 𝑛′ be the number of elements in 𝐴. The size of 𝐴+ is
initialized as 2𝑐 . In the beginning, 𝐴+ is empty. When 𝑛′ starts to
exceed 𝑐/2, each time we insert a new element into 𝐴, the new

element is inserted into 𝐴+ as well and one element contained in 𝐴

is copied to 𝐴+. Thus, when 𝐴 is full, 𝐴+ contains all elements in

𝐴. Then, we release the memory space of 𝐴, make 𝐴+ as the new
𝐴, and create a new 𝐴+ of size 4𝑐 . When 𝑛′ becomes smaller than

𝑐
4
, we delete 𝐴+ and contract 𝐴 by

𝑐
2
. Then we create a new 𝐴+

of size 𝑐 . Note that the time cost for each insertion/deletion is still

bounded by 𝑂 (1), and the memory space of 𝐴+ is asymptotically

the same as that of 𝐴. Thus, the total memory space of level 0 and

level 1 only depends on the number of elements at the level, which

is 𝑂 (𝑛) and 𝑂 (log𝑛), respectively.
Managing the Dynamic Number of Groups. The number of

groups at both level 0 and level 1 may dynamically change over time

as the number of elements 𝑛 increases or decreases. We consider

how to maintain 𝑂 (1) update time in this scenario. To achieve

this, we make the assumption that the upper bound of 𝑛 is known

in advance. With the assumption, we maintain the lookup table

with 𝑚 = ⌈log(⌈log𝑛⌉ + 1)⌉ + 1 where 𝑛 is the upper bound of

the number of elements over time. Next, we address the challenge

of maintaining the correct group partitions when the number of

groups, denoted as 𝐾 , varies. When 𝐾 is reduced to 𝐾 − 1, we

conceptually combine the 𝐾-th and (𝐾 − 1)-th groups into a new

group, 𝐺𝐾−1. This involves recalculating 𝑝 (𝐺𝐾−1) based on the

new group size and setting a flag to indicate the combination. For

empirical implementations, we can just move two elements from

the old group 𝐺𝐾 to the old group 𝐺𝐾−1 in each sample or update

operation. Before the number of groups is further reduced by one,

all elements have beenmoved into𝐺𝐾−1. To handle an increase in𝐾 ,

we implicitly maintain the partition within 𝐺𝐾 . The implicit group

𝐺 ′𝐾 only consists of elements with probabilities no greater than

2
−𝐾+1

and the implicit group 𝐺 ′𝐾+1 contains the other elements.

When 𝐾 is increased to 𝐾 + 1, the implicit 𝐺 ′𝐾+1 departs from 𝐺𝐾
and becomes the new last group 𝐺𝐾+1. During subsequent query
or update operations, we move an element from the new group

𝐺𝐾+1 into either the new implicit group 𝐺 ′𝐾+1 or the new implicit

group 𝐺 ′𝐾+2 based on its probability. This process ensures that

the partition is completed before the number of groups reaches

𝐾 + 2. Consequently, the correct group maintenance is achieved in

constant time.

A.2 Experiments on Empirical Error
We conduct experiments to empirically check the correctness of

our ODSS and alternatives. According to Law of large numbers,

the empirical probability of each element obtained from a large

number of queries will be close to the true probability and tends

to become closer to the true probability as more queries are per-

formed. Thus, we repeat queries, calculate the empirical probability

𝑝 (𝑥) for each element 𝑥 , and report the maximum absolute error,

max𝑥∈𝑆 |𝑝 (𝑥) − 𝑝 (𝑥) |. Specifically, we set the number of elements

as 𝑛 = 10
5
, the sum of the probabilities of elements 𝜇 = 100, and

the number of update operations as 1000. We first perform 1000

element insertions and then perform 1000 element deletions and

repeat the subset sampling queries for {10
3, 10

4, 10
5, 10

6, 10
7} times.

Thus, the update algorithm and the query algorithm are both tested.

Figure 7 shows the maximum absolute error of all algorithms with

different repeat times. We observe that the maximum absolute error

decreases with increasing repeat times on all algorithms, which

implies the correctness of these algorithms.

A.3 ODSS for Dynamic Influence Maximization
The simulation-based solutions for the Influence Maximization

problem use thewidely-adoptedMonte Carlomethod to estimate the

influence function𝜎 (·). AnMC simulation under the ICmodel starts

from the set 𝑆 , traverses on a possible world of G, and returns the

number of reachable nodes as an estimation of 𝜎 (𝑆). To generate a

possible world ofG, we remove each edge 𝑒 = (𝑢, 𝑣) with probability
1 − 𝑝 (𝑢, 𝑣). It is a subset sampling problem with 𝑆 = E, in which

each element 𝑒 = (𝑢, 𝑣) is associated by a reserving probability

𝑝 (𝑢, 𝑣). When it comes to dynamic IM problems, edges are inserted

into the graph or removed from the graph over time, resulting in

element insertions/deletions of the subset sampling problems.

We conduct experiments on two real-world graphs (OL and TW)

with exponential distribution and Weibull distribution and show

the query time for possible world generations and the update time.

For each graph with various skewed distributions, we query for

100 possible worlds and conduct 1000 edge insertions and 1000

edge deletions of the graph. We report the tradeoff between the

query time and the update time for all algorithms in Figure 8. Our

ODSS outperforms all competitors in terms of both query time and

update time across all tested datasets. While the update time of

the Naive method is comparable to our ODSS, the query time of

the Naive method is 3× ∼ 5× larger than that of ODSS. Note that

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

103 104 105 106 107

times

10−4

10−3

10−2

M
ax

 A
bs

ol
ut

e
Er

ro
r

Normal distribution
NaiveSS
BringmannSS
HybridSS
ODSS

103 104 105 106 107

times

10−4

10−3

10−2

M
ax

 A
bs

ol
ut

e
Er

ro
r

Half-normal distribution
NaiveSS
BringmannSS
HybridSS
ODSS

103 104 105 106 107

times

10−4

10−3

10−2

M
ax

 A
bs

ol
ut

e
Er

ro
r

Exponential distribution
NaiveSS
BringmannSS
HybridSS
ODSS

103 104 105 106 107

times

10−4

10−3

10−2

M
ax

 A
bs

ol
ut

e
Er

ro
r

Log-normal distribution
NaiveSS
BringmannSS
HybridSS
ODSS

Figure 7: Max absolute error v.s. repeat times on distributions with different skewnesses.

1003 × 10−1 4 × 10−1 6 × 10−1

query time (s)
10−7

10−5

10−3

10−1

101

up
da

te
 ti

m
e

(s
)

NaiveSS

BringmannSS

HybridSS

ODSS

OL - Exponential distribution

3 × 10−1 1 × 100

query time (s)
10−7

10−5

10−3

10−1

101
up

da
te

 ti
m

e
(s

)

NaiveSS

BringmannSS

HybridSS

ODSS

OL - Weibull distribution

3 × 100 101 3 × 101

query time (s)

10−5

10−3

10−1

101

up
da

te
 ti

m
e

(s
)

NaiveSS
BringmannSS

HybridSS

ODSS

TW - Exponential distribution

3 × 100 101 3 × 101

query time (s)

10−5

10−3

10−1

101

up
da

te
 ti

m
e

(s
)

NaiveSS
BringmannSS

HybridSS

ODSS

TW - Weibull distribution

Figure 8: Query time v.s. update time for generating possible worlds.

the ratio of the query time of the Naive method to that of ODSS

is influenced by the ratio𝑚/𝑛, as the query time of ODSS in this

setting is 𝑂 (𝑛). Specifically, we scale the sum of probabilities of

the outgoing neighbors of each node to 1, resulting in a sum of

probabilities 𝜇 equal to 𝑛. Therefore, the query time of ODSS is

𝑂 (1+𝜇) = 𝑂 (𝑛), while the query time of the Naive method is𝑂 (𝑚).
The BringmanSS method performs 2× faster than the Naive method

for a query. However, it needs 100× update time larger than ODSS

on the OL graph.

B TECHNICAL DETAILS
B.1 Proof of Lemma 1

Proof. We first consider the correctness of the algorithm. Let

𝑅𝑖 be the 𝑖-th random number generated in Algorithm 1, that

is, Pr[𝑅1 = 𝑗] = 2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1/𝑝 (𝐺𝑘) and Pr[𝑅𝑖 = 𝑗] =
2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1
for 1 < 𝑖 ≤ 𝑛𝑘 . Thus, the index of the 𝑖-th

candidate is

∑𝑖
ℎ=1

𝑅ℎ . Note that we call Algorithm 1 if and only if

𝐺𝑘 is sampled with probability 𝑝 (𝐺𝑘), i.e., 𝑌𝑘 = 1. Denote the 𝑖-th

candidate as 𝑋𝑖 . We have

Pr[𝑋𝑖 = 𝑗 |𝑌𝑘 = 1] = Pr

[
𝑖∑︁
ℎ=1

𝑅ℎ = 𝑗

]
.

For simplicity’s sake, we denote the 𝑗-th element in 𝐺𝑘 as 𝑒 𝑗 . Thus,

𝑒 𝑗 is sampled as the 𝑖-th candidate with probability

Pr[𝑋𝑖 = 𝑗] = Pr

[
𝑖∑︁
ℎ=1

𝑅ℎ = 𝑗

]
· Pr[𝑌𝑘 = 1],

for 1 ≤ 𝑖 ≤ 𝑗 . Let 𝑍𝑖 =
∑𝑖
ℎ=1

𝑅ℎ . Note that 𝑒 𝑗 can be sampled as

a 𝑖-th candidate, where 1 ≤ 𝑖 ≤ 𝑗 . Then, the probability that 𝑒 𝑗 is

sampled as a candidate is

𝑗∑︁
𝑖=1

Pr[𝑋𝑖 = 𝑗] = Pr [𝑌𝑘 = 1]
𝑗∑︁
𝑖=1

Pr[𝑍𝑖 = 𝑗] .

Define 𝑝 (𝑒 𝑗) =
∑𝑗

𝑖=1
Pr[𝑍𝑖 = 𝑗]. We will prove that 𝑝 (𝑒 𝑗) =

2
−𝑘+1/𝑝 (𝐺𝑘) for all 𝑗 using mathematical induction. For the initial

step, we have 𝑝 (𝑒1) = Pr[𝑍1 = 1] = 2
−𝑘+1/𝑝 (𝐺𝑘) for the first

element 𝑒1. Next, for the inductive step, we prove that 𝑝 (𝑒 𝑗) =
2
−𝑘+1/𝑝 (𝐺𝑘) if the proposition is true for any 1 ≤ 𝑗 ′ < 𝑗 . Consider

the probability of 𝑍𝑖 = 𝑗 . For 𝑖 > 2, Pr[𝑍𝑖 = 𝑗] can be written as∑𝑗−1

ℎ=𝑖−1
Pr[𝑍𝑖−1 = ℎ ∩ 𝑅𝑖 = 𝑗 − ℎ]. Note that the random variables

𝑅1, 𝑅2, . . . are mutually independent. Thus, we have

Pr[𝑍𝑖 = 𝑗] =
𝑗−1∑︁
ℎ=𝑖−1

Pr[𝑍𝑖−1 = ℎ] Pr[𝑅𝑖 = 𝑗 − ℎ] . (2)

Applying Equation (2) to 𝑝 (𝑒 𝑗), we have

𝑝 (𝑒 𝑗) = Pr[𝑍1 = 𝑗]+
𝑗∑︁
𝑖=2

𝑗−1∑︁
ℎ=𝑖−1

Pr[𝑍𝑖−1 = ℎ]·2−𝑘+1 (1−2
−𝑘+1) 𝑗−ℎ−1 .

We interchange the order of the summations and obtain

𝑝 (𝑒 𝑗) = Pr[𝑍1 = 𝑗] +
𝑗−1∑︁
ℎ=1

ℎ∑︁
𝑖=1

Pr[𝑍𝑖 = ℎ] · 2−𝑘+1 (1 − 2
−𝑘+1) 𝑗−ℎ−1 .

Note that

∑ℎ
𝑖=1

Pr[𝑍𝑖 = ℎ] is exactly 𝑝 (𝑒ℎ). Using the inductive

hypothesis, we have 𝑝 (𝑒ℎ) = 2
−𝑘+1/𝑝 (𝐺𝑘) for ℎ < 𝑗 . Thus,

𝑝 (𝑒 𝑗) = Pr[𝑍1 = 𝑗] +
𝑗−1∑︁
ℎ=1

2
−𝑘+1

𝑝 (𝐺𝑘)
· 2−𝑘+1 (1 − 2

−𝑘+1) 𝑗−ℎ−1 . (3)

For 𝑖 = 1, we have

Pr[𝑍1 = 𝑗] = 2
−𝑘+1 (1 − 2

−𝑘+1) 𝑗−1

𝑝 (𝐺𝑘)
. (4)

Applying Equation (4) to Equation (3), we obtain that 𝑝 (𝑒 𝑗) =

2
−𝑘+1/𝑝 (𝐺𝑘). This completes the inductive step. Hence, 𝑒 𝑗 is sam-

pled with probability

𝑗∑︁
𝑖=1

Pr[𝑋𝑖 = 𝑗] = 𝑝 (𝐺𝑘) · 2−𝑘+1/𝑝 (𝐺𝑘) = 2
−𝑘+1 .

We accept each candidate 𝑒 𝑗 with probability 𝑝 (𝑒 𝑗)/2−𝑘+1. Thus,
the element 𝑒 𝑗 is sampled with probability 2

−𝑘+1 · 𝑝 (𝑒 𝑗)/2−𝑘+1 =

Optimal Dynamic Subset Sampling: Theory and Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

𝑝 (𝑒 𝑗). In a word, given that 𝐺𝑘 is sampled with probability 𝑝 (𝐺𝑘),
Algorithm 1 returns an unbiased sample of 𝐺𝑘 .

Next, we consider the expected query time of Algorithm 1. The

expected query time only depends on the number of times we

generate random numbers, which equals the number of candi-

dates plus one (one time for the index out of the group). For 0 ≤
𝑘 < 𝐾 , the expected number of candidates in 𝐺𝑘 is

∑𝑛𝑘
𝑖=1

2
−𝑘+1 ≤∑

𝑥𝑖 ∈𝐺𝑘
2𝑝 (𝑥𝑖) = 2𝜇𝑘 since 𝑝 (𝑥𝑖) ≤ 2

−𝑘+1
. For 𝐺𝐾 , the expected

number of candidates is 2
−𝐾+1 ·𝑛𝐾 ≤ 2

−𝐾+1 ·𝑛 ≤ 1. Therefore, the

expected query time for 𝐺𝑘 is 2𝜇𝑘 + 1 = 𝑂 (𝜇𝑘 + 1) for 0 ≤ 𝑘 < 𝐾 ,

and𝑂 (1) for 𝑘 = 𝐾 . For simplicity, we use𝑂 (𝜇𝑘 +1) as the expected
time for 0 ≤ 𝑘 ≤ 𝐾 in the remainder of the manuscript. □

B.2 Proof of Lemma 2
Proof. 𝜇 (0) = 𝜇 =

∑𝑛
𝑖=1

𝑝 (𝑥𝑖). Let 𝑛 (ℓ) = |𝑆 (ℓ) | be the number

of elements at level ℓ , 𝑛
(ℓ)
𝑘

= |𝐺 (ℓ)
𝑘
| be the number of elements

contained in 𝐺
(ℓ)
𝑘

, 𝐾 (ℓ) = ⌈log𝑛 (ℓ) ⌉ + 1 be the largest index of

the groups at level ℓ . Note that 𝑝
(
𝑥
(ℓ)
𝑘

)
= 𝑝

(
𝐺
(ℓ−1)
𝑘

)
, so 𝜇 (ℓ) =∑𝐾 (ℓ−1)

𝑘=1
𝑝
(
𝐺
(ℓ−1)
𝑘

)
. And 𝑝

(
𝐺
(ℓ−1)
𝑘

)
= 1 − (1 − 2

−𝑘+1)𝑛
(ℓ−1)
𝑘 is the

probability that 𝐺
(ℓ−1)
𝑘

contains at least one candidate. Thus, the

sum of the probabilities at level ℓ is

𝜇 (ℓ) =
𝐾 (ℓ−1)∑︁
𝑘=1

1 − (1 − 2
−𝑘+1)𝑛

(ℓ−1)
𝑘 ≤

𝐾 (ℓ−1)∑︁
𝑘=1

2
−𝑘+1𝑛 (ℓ−1)

𝑘

since (1 − 𝑥)𝑦 ≥ 1 − 𝑥𝑦 for any 0 ≤ 𝑥 < 1 and 𝑦 ≥ 1. Note that

𝑝
(
𝑥
(ℓ)
𝑖

)
> 2
−𝑘

if 𝑥
(ℓ)
𝑖
∈ 𝐺 (ℓ)

𝑘
for 0 ≤ 𝑘 < 𝐾 (ℓ) at any level ℓ . Thus,

we have

2
−𝑘+1𝑛 (ℓ−1)

𝑘
≤

∑︁
𝑥𝑖 ∈𝐺 (ℓ−1)

𝑘

2𝑝
(
𝑥
(ℓ−1)
𝑖

)
for 0 ≤ 𝑘 < 𝐾 (ℓ−1)

. For 𝑘 = 𝐾 (ℓ−1)
, 2
−𝑘+1 = 2

−⌈log𝑛 (ℓ−1) ⌉ ≤
1/𝑛 (ℓ−1)

. Note that 𝑛
(ℓ−1)
𝑘

≤ 𝑛 (ℓ−1)
, so 2

−𝑘+1𝑛 (ℓ−1)
𝑘

≤ 1 for 𝑘 =

𝐾 (ℓ−1)
. Therefore, we have

𝜇 (ℓ) ≤
∑︁

𝑥
(ℓ−1)
𝑖

∈𝑆 (ℓ−1)

2𝑝 (𝑥 (ℓ−1)
𝑖

) + 1 = 2𝜇 (ℓ−1) + 1.

Hence, we can derive the upper bound of 𝜇 (ℓ) :

𝜇 (ℓ) ≤ 2𝜇 (ℓ−1) + 1 ≤ 2(2𝜇 (ℓ−2) + 1) + 1 ≤ · · · ≤ 2
ℓ𝜇 + 2

ℓ − 1.

□

B.3 Proof of Theorem 1
Proof. We first show that Algorithm 2 draws an unbiased sam-

ple of 𝑆 . Firstly, the Naive method gives an unbiased sample of

𝑆 (𝐿) . Each sampled element 𝑥
(𝐿)
𝑘

indicates that𝐺
(𝐿−1)
𝑘

is sampled

with 𝑝
(
𝐺
(𝐿−1)
𝑘

)
. According to Lemma 1, given that a group 𝐺

(ℓ)
𝑘

is

sampled with 𝑝
(
𝐺ℓ
𝑘

)
, Algorithm 1 returns a sample of 𝐺

(ℓ)
𝑘

. Thus,

we obtain an unbiased sample of 𝑆 (𝐿−1)
by combined the outcomes

of SamplingWithinGroup(𝐺 (𝐿−1)
𝑘

) for all sampled groups 𝐺
(𝐿−1)
𝑘

.

Repeating in this fashion, we finally obtain an unbiased sample of

𝑆 (0) . Thus, Algorithm 2 returns an unbiased sample of the subset

sampling problem.

Next, we prove the expected query time of Algorithm 2. Note that

𝐿 equals log
∗ 𝑛 to guarantee the number of elements at level 𝐿 is a

constant. Sampling elements at level 𝐿 (Algorithm 2 Line 2) costs

constant time since𝑛 (𝐿) is a constant. Consider the cost of sampling

elements at level ℓ for ℓ < 𝐿, denoting as 𝐶 (ℓ) , given that some

groups at level ℓ are sampled (Algorithm 2 Line 3 to 6). Note that the

expected number of sampled groups at level ℓ is exactly the expected

number of elements sampled at level ℓ + 1, which equals 𝜇 (ℓ+1) .
According to Lemma 1, Algorithm 1 SamplingWithinGroup

(
𝐺
(ℓ)
𝑘

)
costs 2𝜇

(ℓ)
𝑘
+ 1 expected time for 0 ≤ 𝑘 ≤ 𝐾 (ℓ) , where 𝜇 (ℓ)

𝑘
is the

sum of probabilities for the elements in𝐺
(ℓ)
𝑘

. Let𝑇 be the set of the

indexes of the sampled groups. We have

E
[
𝐶 (ℓ)

]
≤ 𝑂 (1) + 𝜇 (ℓ+1) + E

[∑︁
𝑘∈𝑇
(2𝜇 (ℓ)

𝑘
+ 1)

]
,

in which the𝑂 (1) term for miscellaneous overhead, the 𝜇 (ℓ+1) term
for iterating in the 𝜇 (ℓ+1) sampled groups. According to the linearity

of expectation, we have E
[∑

𝑘∈𝑇 (2𝜇
(ℓ)
𝑘
+ 1)

]
= E

[∑
𝑘∈𝑇 2𝜇

(ℓ)
𝑘

]
+

E[∑𝑘∈𝑇 1]. The first term E
[∑

𝑘∈𝑇 2𝜇
(ℓ)
𝑘

]
is less than the sum of

2𝜇𝑘 for all 0 ≤ 𝑘 ≤ 𝐾 (ℓ) , which equals 2𝜇 (ℓ) . The second term

E[∑𝑘∈𝑇 1] equals 𝜇 (ℓ+1) . Thus, E[𝐶 (ℓ)] ≤ 2𝜇 (ℓ+1) + 2𝜇 (ℓ) +𝑂 (1).
The total query cost can be bounded by

E[𝐶] = E
[
𝐿∑︁
ℓ=0

𝐶 (ℓ)
]
≤ 𝑂 (1) +

𝐿−1∑︁
ℓ=0

(
2𝜇 (ℓ+1) + 2𝜇 (ℓ) +𝑂 (1)

)
.

Applying Equation (1), we derive the expected query time

E[𝐶] = 𝑂
(
2

log
∗ 𝑛𝜇 + 2

log
∗ 𝑛 + log

∗ 𝑛
)
.

Finally, we prove the preprocessing time and the memory cost of

Algorithm 2. In the preprocessing phase, we check the probability

of each element and then assign it to an appropriate group at each

level ℓ (except for 𝐿 as𝐺 (𝐿) is not necessary). Then, the probabilities
of the groups are computed to obtain the probabilities of elements

at the next level. Note that 𝑝
(
𝐺
(ℓ)
𝑘

)
= 1 − (1 − 2

−𝑘+1)𝑛
(ℓ)
𝑘 can be

calculated in constant time since 𝑎𝑏 = exp(𝑏 log𝑎). And the number

of the groups at level ℓ is ⌈log𝑛 (ℓ) ⌉ + 1, which equals 𝑛 (ℓ+1) . Thus,
the cost of each level ℓ is 𝑂 (𝑛 (ℓ) + 𝑛 (ℓ+1)) = 𝑂 (𝑛). The total cost
of preprocessing is

∑𝐿−1

ℓ=0

(
𝑛 (ℓ) + 𝑛 (ℓ)

)
= 𝑂 (𝑛𝐿) = 𝑂 (𝑛 log

∗ 𝑛).
Similary, the cost of memory space at level ℓ is𝑂

(
𝑛 (ℓ) + ⌈log𝑛 (ℓ) ⌉ +

1

)
for 𝑛 (ℓ) elements and ⌈log𝑛 (ℓ) ⌉ + 1 groups. The total memory

space is 𝑂 (𝑛 log
∗ 𝑛). □

B.4 Proof of Lemma 3
Proof. We first show that the table lookup method gives an

unbiased sample of 𝑆 . Denote the subset as 𝐵 that we obtain by

indexing into the table with 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) and a uniformly

distributed random 𝑟 . 𝐵 is selected with 𝑝 (𝐵) as we fill in𝑚𝑚𝑝 (𝐵)
entries with 𝐵 in the total𝑚𝑚 entries of the row. For each element

𝑥𝑖 , it is included in 𝐵 with probability 𝑝 (𝑥𝑖). If 𝑥𝑖 is included in the

selected 𝐵, that is, 𝑥𝑖 is sampled as a candidate, we accept it with

𝑝 (𝑥𝑖)/𝑝 (𝑥𝑖). Thus, 𝑥𝑖 is sampled with 𝑝 (𝑥𝑖) · 𝑝 (𝑥𝑖)/𝑝 (𝑥𝑖) = 𝑝 (𝑥𝑖).
The unbiasedness of the table lookup method follows.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Lu Yi, Hanzhi Wang, and Zhewei Wei

Next, we consider the expected query time of the table lookup

method. When querying, we generate a random 𝑟 uniformly from

{0, . . . ,𝑚𝑚 − 1} and obtain the bit array stored in the entry in row

𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) and column 𝑟 . To decode the bit array, we first

get the position 𝑖 of the rightmost 1-bit by standard bit operations

in 𝑂 (1) time. 𝑥𝑖 is the sampled candidate with the smallest index.

Then, replace 𝐵 with 𝐵 − 2
𝑖
. Repeating the technique above with 𝐵,

we will get all the sampled candidates. For each candidate, we then

use rejection to get the probability of candidate 𝑥𝑖 down to 𝑝 (𝑥𝑖).
Thus, the query time depends on the number of sampled candidates.

Note that 𝑝 (𝑥𝑖) − 𝑝 (𝑥𝑖) ≤ 1

𝑚 since 𝑝 (𝑥𝑖) = ⌈𝑚𝑝 (𝑥𝑖)⌉/𝑚. Thus we

have

𝑚∑︁
𝑖=1

𝑝 (𝑥𝑖) ≤
𝑚∑︁
𝑖=1

1

𝑚
+ 𝑝 (𝑥𝑖) ≤ 𝜇 + 1,

where 𝜇 =
∑𝑚
𝑖=1

𝑝 (𝑥𝑖). Thus, the expected query time is 𝑂 (𝜇 + 1).
At the preprocessing phase, we maintain the table and calculate

𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) for the current (𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)). For each
table row, we calculate the probabilities of 2

𝑚
subsets. Note that

each probability of a subset is the product of𝑚 probabilities, which

costs 𝑂 (𝑚) time to calculate. The time for filling in the table is

𝑂 (𝑚𝑚 · 𝑚𝑚). Calculating 𝐴(𝑝 (𝑥1), . . . , 𝑝 (𝑥𝑚)) costs 𝑂 (𝑚) time.

Thus, the total preprocessing time is 𝑂 (2𝑚 ·𝑚 +𝑚2𝑚).
The memory space depends on the size of the table, which is

𝑂 (𝑚2𝑚). Note that the word length is at least log𝑚𝑚 bits to store

the row index in a single memory word. We will show in the proof

of Theorem 2 that the word length under the standard word RAM

model is sufficient since the number of elements𝑚 is so few. □

B.5 Proof of Theorem 2
Proof. We first show the correctness of Algorithm 3. This op-

timal algorithm is derived by replacing the Naive method in Al-

gorithm 2 with the table lookup method. Since we have proved

the correctness of the table lookup method in Lemma 3 and the

correctness of the basic algorithm in Theorem 1, the correctness of

Algorithm 3 follows.

Consider the expected query time. As proved in Theorem 1, the

expected cost of sampling elements within the sampled groups at

level ℓ is E[𝐶 (ℓ)] ≤ 2𝜇 (ℓ+1) + 2𝜇 (ℓ) +𝑂 (1). According to Lemma 3,

the expected cost of table lookup at level 2 is E[𝐶 (2)] = 1 + 𝜇 (2) .
Thus, the expected query time of Algorithm 3 is

E[𝐶] = E[𝐶 (0)] + E[𝐶 (1)] + E[𝐶 (2)] ≤ 3𝜇 (2) + 4𝜇 (1) + 2𝜇 + 3.

According to Lemma 2, 𝜇 (ℓ) ≤ 2
ℓ𝜇 + 2

ℓ − 1. Thus, we derive the

expected query time of Algorithm 3 as

E[𝐶] = 𝑂 (1 + 𝜇) .
Consider the expected update time. As we illustrate in Appen-

dix A.1, an insertion/deletion of an element within a group can

be done in constant time. Each update operation (element inser-

tion/deletion, modification of probability) can be resolved into sev-

eral insertions or deletions within a group. Thus, all update opera-

tions can be done in constant time.

The preprocessing time for level 1 and level 0 is 𝑂 (𝑛) as proved
in Theorem 2. To support efficient updates, we maintain an array for

storing the position in the corresponding group for each element

𝑥𝑖 . The total preprocessing time remains 𝑂 (𝑛) for level 1 and level

0. According to Lemma 3, the preprocessing time for the table

lookup method for level 2 is 𝑂 (2𝑚 ·𝑚 +𝑚𝑚) when there are 𝑚

elements at level 2. Note that𝑚 = ⌈log(⌈log𝑛⌉ + 1)⌉ + 1, and hence

𝑂 (2𝑚 ·𝑚 +𝑚𝑚) ≤ 𝑂 (𝑛). Thus, the preprocessing time for each

level 0 ≤ ℓ ≤ 2 is 𝑂 (𝑛), so is the total preprocessing time.

At level 0 and level 1, we maintain an array for each group to

store the containing elements. To help with locating the position of

the elements in the groups, we also maintain another array at level

0 and level 1 to store the position of each element. Thus, the total

memory space actually in use is 𝑂 (𝑛). According to Lemma 3, it

costs𝑂 (𝑚2𝑚) space for level 2. Since𝑚 = ⌈log(⌈log𝑛⌉ + 1)⌉ + 1, we

have 𝑂 (𝑚2𝑚) ≤ 𝑂 (𝑛). As mentioned in the proof of Lemma 3, the

table lookup method requires the word length of at least log𝑚𝑚

bits. Since𝑚 = 𝑂 (log log𝑛), the word length of𝑂 (log𝑛) bits in the

word RAMmodel is sufficient. Therefore, we conclude that the total

memory space for the optimal algorithm ODSS is 𝑂 (𝑛). □

	Abstract
	1 Introduction
	1.1 Concrete Applications
	1.2 Motivations and Contributions

	2 Preliminary
	2.1 Other Related Work

	3 Algorithm
	3.1 Basic Dynamic Subset Sampling
	3.2 Optimal Dynamic Subset Sampling
	3.3 Update Operations

	4 Theoretical Analysis
	5 Experiments
	6 Empirical Study
	6.1 Applying ODSS to RR-Sketch Solutions

	7 Conclusion
	References
	A Supplementary Experiments
	A.1 Implementation Details
	A.2 Experiments on Empirical Error
	A.3 ODSS for Dynamic Influence Maximization

	B Technical Details
	B.1 Proof of Lemma 1
	B.2 Proof of Lemma 2
	B.3 Proof of Theorem 1
	B.4 Proof of Lemma 3
	B.5 Proof of Theorem 2

