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Abstract

Future link prediction on temporal graphs is a fundamental task with wide applica-
bility in real-world dynamic systems. These scenarios often involve both recurring
(seen) and novel (unseen) interactions, requiring models to generalize effectively
across both types of edges. However, existing methods typically rely on complex
memory and aggregation modules, yet struggle to handle unseen edges. In this
paper, we revisit the architecture of existing temporal graph models and identify
two essential but overlooked modeling requirements for future link prediction:
representing nodes with unique identifiers and performing target-aware matching
between source and destination nodes. To this end, we propose Cross-Attention
based Future Link Predictor on Temporal Graphs (CRAFT), a simple yet effective
architecture that discards memory and aggregation modules and instead builds on
two components: learnable node embeddings and cross-attention between the desti-
nation and the source’s recent interactions. This design provides strong expressive
power and enables target-aware modeling of the compatibility between candidate
destinations and the source’s interaction patterns. Extensive experiments on diverse
datasets demonstrate that CRAFT consistently achieves superior performance with
high efficiency, making it well-suited for large-scale real-world applications.

1 Introduction

Dynamic systems are typically formulated as temporal graphs, where nodes and edges represent
entities and their interactions, and each edge is annotated with a timestamp [9, 14, 43]. The prediction
of future interactions between entities is defined as a future link prediction task in existing studies [8],
which is crucial and widely applied in real-world systems [2, 24], such as social networks [7, 10]
and collaboration platforms [29]. Future interactions can be categorized into repeated interactions
with historical neighbors and new interactions with previously unconnected nodes [40]. For instance,
in social networks, individuals often maintain regular contact with close friends while occasionally
reaching out to other acquaintances. Similarly, in academic collaboration networks, researchers may
frequently publish with long-term collaborators while also initiating projects with new coauthors.
Thus, to precisely predict both seen and unseen interactions is important to enhance user experience
in different dynamic systems and improve their utility. This dual nature poses a nontrivial challenge
for future link prediction, demanding models that generalize across both seen and unseen edges.

Existing temporal graph learning methods perform future link predictions by adopting one or both
of the memory and aggregation modules [26, 39], as illustrated in Figure 1. The memory module
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Figure 1: The general model architecture of existing temporal graph learning methods.

represents node interaction history in a compressed memory state, while the aggregation module
generates node embeddings by aggregating historical neighbors. For example, TGN [26] uses a
GRU [5] to update node memory and a graph attention layer for aggregation, whereas DyGFormer [42]
omits the memory module and directly applies self-attention over historical neighbors. Although
equipped with a sophisticated architecture, these methods suffer substantial performance degradation
on recent benchmarks like TGB-Seq [40], which emphasize unseen edge prediction in real-world
scenarios, thus limiting their practical utility. This consistent underperformance may stem from
a deeper architectural misalignment with the core demands of future link prediction, prompting a
critical question: Are memory and aggregation modules truly effective for future link prediction,
especially given the need to handle both seen and unseen edge scenarios?

To investigate this question, we identify two essential model capabilities that are missing from the
existing architecture but are key to addressing the challenges of future link prediction. First, the
memory and aggregation modules have limited expressive power due to the absence of unique node
identifiers. They typically operate over historical interaction data, which often lack distinctive node or
edge features [12, 16, 23, 40]. Therefore, models often struggle to distinguish between nodes using
only their edge timestamps [40]. This limitation becomes particularly severe in datasets with a low
proportion of seen edges, where the model must rely on a more expressive representation of historical
interactions to generalize to unseen edges. Second, both modules are generally applied to individual
nodes in isolation, without modeling how well the candidate destination (i.e., the target) aligns with
the source’s recent interaction patterns, a capability we refer to as target-aware matching. Although
some recent methods [42, 34, 19, 4] leverage correlation encodings to capture the relation between the
source and destination, they primarily focus on the connections between their neighborhoods, rather
than directly assessing semantic compatibility between the destination and the source’s behavioral
history. Therefore, the framework designs of these methods are not well aligned with the core
demands of future link prediction – to evaluate how well a destination fits the source context.

In this paper, we introduce a minimalistic architecture that centers on these two essential modeling
requirements: representing nodes with unique node identifiers and performing target-aware matching,
while discarding the commonly used memory and aggregation modules. Specifically, we propose
CRoss-Attention based Future Link Predictor on Temporal Graphs (CRAFT), which employs
learnable embeddings to serve as node identifiers and a cross-attention mechanism between each can-
didate destination and the source’s recent neighbors to realize target-aware matching. By integrating
these two components, our CRAFT provides strong expressive power and enables direct evaluation
of the destination’s compatibility with the source’s interaction patterns, making it effective for both
seen and unseen edge prediction. Overall, our main contributions are as follows:

• We propose CRAFT, a simple yet effective architecture for temporal graph learning. Unlike existing
models that rely on memory and aggregation modules, CRAFT is built on two essential components
tailored for future link prediction: unique node identifiers and target-aware matching.

• With strong expressiveness and destination-conditioned context modeling, CRAFT effectively
addresses both seen and unseen edge prediction, addressing the limitations observed in prior work.

• Extensive experiments on 17 datasets, including the TGB and TGB-Seq benchmarks, demonstrate
that CRAFT consistently delivers superior performance across both types of prediction tasks while
maintaining high efficiency, making it well-suited for large-scale real-world applications.
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2 Related Work

Temporal graph learning methods for future link prediction. Temporal graph learning focuses on
modeling the evolving patterns of node interactions over time, with future link prediction serving as a
core task [28]. TGN [26] initially propose the memory-aggregation architecture for temporal graph
learning and categorize earlier methods within this architecture, including JODIE [16], DyRep [31],
and TGAT [38]. Among them, JODIE, DyRep, and TGN adopt RNNs [36] in the memory module
to update node memory when new edges arrive, and utilize time projection, identity function,
and temporal graph attention to aggregate historical information, respectively. TGAT and many
subseqent methods generate time-dependent node representations directly by aggregating historical
neighbors without the memory module. These methods leverage various techniques to model dynamic
interactions, including the MLP-Mixer [30] in GraphMixer [6], attention mechanisms in TGAT [38],
DyGFormer [42], TCL [33], and SimpleDyG [37], as well as temporal point processes (e.g., Hawkes
processes [11, 20]) in TREND [35] and LDG [15], etc.

Limitations of existing methods on predicting unseen edges. Poursafaei et al. [23] are the first to
observe the imbalance between seen and unseen edges in existing datasets. They propose a simple
heuristic method, EdgeBank, which memorizes historical edges without any learnable components,
yet achieves surprisingly strong performance on many benchmarks due to their high ratio of seen
edges. To make evaluation more challenging, Huang et al. [12] introduce the TGB benchmark,
featuring large-scale datasets and rigorous multiple negative sampling strategy, while some datasets
still exhibit excessive seen edges. To fill this gap, Yi et al. [40] propose the TGB-Seq benchmark,
designed to evaluate performance on datasets with minimal seen edges. Their findings further revealed
that most existing methods struggle to generalize to unseen edge. This persistent performance gap
between seen and unseen edges motivates us to rethink the architecture of temporal graph learning.

3 Problem Formulation

Temporal Graphs. We define a temporal graph as G = (V,E), where V is the set of nodes, and E
is a sequence of edges ordered by non-decreasing timestamps, i.e., E = {e1, e2, · · · , em}, with each
edge ei = (si, di, ti) denoting an interaction from the source node si to the destination node di at
time ti. Throughout this paper, we use the terms target and destination interchangeably.

Future Link Prediction. Future link prediction aims to estimate the likelihood of an interaction
between a source node s and a destination node d at a future time t, given all historical edges before t
in the graph G. We follow prior works [12, 40] to frame this task as a ranking problem, as real-world
applications often require identifying the most likely destination from a large pool of candidates.
Accordingly, the objective is to rank the positive destination node d higher than sampled negative
candidates, conditioned on the source node s and the prediction time t.

4 Proposed Methods

In this section, we first introduce how our CRAFT’s architecture achieves two essential modeling
requirements for future link prediction (Section 4.1): 1) representing nodes with unique identifiers
to enhance the model expressive power and 2) performing target-aware matching to enable direct
assessment of the temporal compatibility between the source and destination. Then, we details on the
necessity of these two components in Section 4.2. In Section 4.3, we analyze the time complexity of
CRAFT to demonstrate its superior efficiency and compare it with existing methods.

4.1 Model Architecture

The model architecture of CRAFT is shown in Figure 2. Given the source s and a set of candidate
destinations D = {d1, d2, · · · , dj} at time t, we first extract the k recent neighbors of s before t, and
look up the node embeddings for these neighbors and the destinations. For the i-th neighbor ni of s,
we add positional encoding to the node embedding to capture the temporal order of these neighbors.
Then we adopt a cross-attention module between the candidate destinations and the source’s neighbors
to compute the edge representations. To capture the temporal status of the destinations, we encode the
elapsed time since last activity of these destinations and concatenate it with the edge representations.
Finally, we use an MLP to predict the edge likelihoods. We detail the process as follows.
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Figure 2: Model architecture of our proposed method, CRAFT: representing nodes with learnable
embeddings and performing target-aware matching using cross-attention.

Learnable node embedding as unique identifiers. To represent nodes with unique identifiers,
we introduce learnable node embeddings that are trained jointly with the model. Such trainable
embeddings can encode the contextual information from interaction history of nodes, thereby serving
as the unique latent identifiers. Specifically, we denote the embedding of node n as e(n) ∈ Rd. For
the i-th neighbor ni of the source s, we add positional encoding p(i) to the node embedding e(ni) to
represent the temporal order of these neighbors. The updated embedding is given by:

ē(ni) = e(ni) + p(i), (1)

where p(i) is also trainable. The positional encoding enable the model to capture the short-term and
long-term interests of the source, which affect the future interactions crucially. Then, we obtain the
embedding sequence of the source’s neighbors: S = [ē(n1), ē(n2), · · · , ē(nk)] and the embedding
sequence of the candidate destinations: D = [e(d1), e(d2), · · · , e(dj)]. Note that these destination
nodes are independent of each other, and we concatenate them only for parallel computation.

Target-aware matching via cross-attention. Considering the inherent requirement of future link
prediction to assess the destination’s compatibility with the source’s historical interaction patterns,
we implement target-aware matching through cross-attention between the candidate destinations and
the source’s neighbors. This mechanism allows each candidate destination to directly attend to the
source’s historical interactions, thus better evaluating the alignment between the destination and the
source’s temporal preferences. We define the Attention and FFN function [32] as follows:

Attention(Q,K,V) = softmax(
QK⊤
√
d

)V, (2)

FFN(H) = GELU(HW1 + b1)W2 + b2. (3)

Our cross-attention module is stacked with multiple layers, and each layer includes a multi-head
attention network (MHA) and a feed-forward network (FFN). The ℓ-th layer calculation is given by:

Z
(ℓ)
i = Attention(H(ℓ−1)WQ

ℓ,i,SW
K
ℓ,i,SW

V
ℓ,i), (4)

Z(ℓ) = MHA(H(ℓ−1),S) +H(ℓ−1) = concat
(
Z

(ℓ−1)
0 ,Z

(ℓ−1)
1 , · · · ,Z(ℓ−1)

h−1

)
Wo +H(ℓ−1), (5)

H(ℓ) = FFN(Z(ℓ)) + Z(ℓ). (6)

where WQ
ℓ,i ∈ Rd×dh , WK

ℓ,i ∈ Rd×dh , and WV
ℓ,i ∈ Rd×dh are the projection weight for the i-th head

in the ℓ-th layer, where dh = d/h and h is the number of heads. H(ℓ) denotes the hidden state of the
ℓ-th layer, and H(0) = D. Each layer takes the hidden state of the previous layer as the query, and
the embedding sequence of the source’s neighbors as the key and value. The output of the last layer
H(L) will be the edge representations of the source and candidate destinations.
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Prediction. After the cross-attention module, we encode the elapsed time since last activity of
the destination nodes, in order to capture the temporal status of the destinations. The elapsed time
is projected to a time-context vector Rd by a linear layer and then concatenated with the edge
representation. Finally, we feed them to an MLP to predict the edge likelihood between the source
and the destination. Specifically, the predicted score of the i-th destination node di is computed as:

ŷi = MLP
(

concat
(
H(L)(i),TimeProjection (∆t(di))

))
, (7)

where ∆t(di) = t− t−(di) is the elapsed time between the prediction time t and the last activity time
of di, t−(di), and H(L)(i) is the edge presentation of (s, di, t) generated by cross-attention module.
Furthermore, for the scenarios involving excessive seen edges, we encode the repeat time of the
candidate edge to capture the inherent repeat patterns in the temporal graph. Similar to the elapsed
time encoding, we will first project the edge repeat time by a linear layer and then concatenate it with
the edge representation before the prediction MLP.

Loss function. We adopt the Bayesian Personalized Ranking loss [25], which is widely used and
well-suited for ranking tasks [17]. Given a source node s interacting with a positive destination node
di and a negative destination node dj at time t, the loss is defined as:L(s, t) = − log σ(ŷi − ŷj),
where ŷi and ŷj denote the predicted scores for the positive and negative samples, respectively.

4.2 On the Necessity of Learnable Embeddings and Cross-Attention

4.2.1 Learnable Node Embeddings Enable Powerful Expressiveness

Most existing methods generate node representations from interaction data, such as edge timestamps
and node or edge features. However, in many real-world temporal graphs, including well-established
benchmarks [12, 40, 16, 23], these features are often missing or extremely sparse. This is largely
because node and edge features are often hard to collect in practice and are not easily aligned across
heterogeneous node types [40]. Therefore, many models rely purely on edge timestamps, which
significantly limits their ability to distinguish between nodes. In the example shown in Figure 1,
existing methods are unable to distinguish nodes a and f because they have identical interaction
timestamps and lack unique identifiers.

Recent approaches [4, 19, 34, 42] attempt to mitigate this issue by introducing correlation encodings to
capture the relation between the k-hop neighborhoods of the source and destination nodes. However,
the model’s perception is inherently constrained by the choice of k. For example, DyGFormer uses
neighbor co-occurrence frequency to model correlations between nodes. But in the example shown
in Figure 1, it cannot distinguish the candidate edge (b, a) from (b, f), since both pairs share two
common neighbors. It fails to capture that only the co-neighbors of b and a have prior interactions
(c, d, t0), which is a critical signal of a tightly-knit group structure and essential for making accurate
predictions. While increasing k may offer broader context, it leads to exponential neighborhood
expansion, introducing excessive noise [4] or resulting in memory overhead [40].

These limitations emphasize the necessity of representing nodes with unique identifiers. Similar
insights have been observed in the study of the expressiveness of static Graph Neural Networks
(GNNs) [3, 18], where the lack of distinctive node embeddings hampers model performance. No-
tably, Abboud et al. [1] demonstrates that GNNs with randomly initialized node embeddings, which
serve as implicit identifiers, can outperform models that rely solely on structural information. There-
fore, we introduce learnable node embeddings that serve as latent identifiers and encode contextual
information, enabling the model to distinguish between nodes even in the absence of explicit features.

4.2.2 Cross-attention Mechanism Enables Target-aware Matching

Most existing methods [26, 38, 6, 16, 31] do not explicitly model the relationship between source
and destination nodes. As illustrated in Figure 1, they typically follow a common paradigm: first,
the memory and aggregation modules are used to encode interaction histories into individual node
representations; then, an MLP predicts the edge likelihood based on these node representations.
This approach models each node’s local dynamics independently and neglects the direct matching
between node pairs. An exception is DyGFormer [42], which applies self-attention over the combined
historical neighbors of both the source and destination nodes, aiming to learn temporal dependencies
within and cross the two sets together. While it introduces a degree of cross-node awareness, it focuses
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Figure 3: Illustration of different source-destination matching schemes for predicting whether UserA
is likely to purchase iPhone Case at time t. Before time t, UserA has purchased iPhone, AirPods, and
iPad in chronological order, while UserB and UserC have previously purchased iPhone Case.

on the relation between the source and destination neighborhoods and is not explicitly conditioned on
the candidate destination. As a result, when the source and destination neighborhoods lack semantic
overlap or are heterogeneous in type, the attention signal becomes diluted or misaligned, leading to
weak modeling of compatibility between the destination and the source context.

To better align with the objective of future link prediction, which involves assessing how well a target
node fits the source context, we implement target-aware matching through a simple yet effective
design: cross-attention between the destination and the source’s recent neighbors. This allows each
candidate destination to directly attend to the source node’s historical interactions and enables the
model to capture fine-grained behavioral patterns as well as semantic alignment across entities.
Consider the example in Figure 3, which demonstrates how different matching schemes perform
in predicting whether UserA is likely to purchase iPhone Case at time t. Subfigure (a) illustrates
the independent matching mechanism adopted by most existing methods, where the source (UserA)
and the destination (iPhone Case) are modeled independently with their respective neighbors. This
hinders the model from recognizing the strong connection between iPhone and iPhone case. In (b),
the neighborhood matching mechanism adopted by DyGFormer includes both source and destination
neighborhoods, but treats all nodes uniformly. If UserB or UserC has purchased many unrelated items
besides iPhone Case, the semantic connection between iPhone and iPhone Case may be overwhelmed.
In contrast, our target-aware matching mechanism, shown in (c), enables the candidate iPhone Case to
attend directly to iPhone, effectively capturing their semantic relationship. We empirically compare
these matching strategies in Section 5.2, demonstrating the advantages of our cross-attention design.

4.3 Time Complexity Analysis

We analyze the time complexity of performing future link predictions for a batch of source nodes and
their corresponding candidate destinations. Let B denote the batch size, k the number of historical
neighbors considered per node, q the number of candidate destinations per source, F the embedding
or feature dimension, and davg the average node degree in the temporal graph. We compare CRAFT
with four state-of-the-art methods: TGAT [38], TGN [26], GraphMixer [6], and DyGFormer [42].
For TGN and TGAT, we follow common practice and consider their standard configurations: TGN
with one graph attention layer and TGAT with two. The total time complexity generally consists of
two dominant parts: 1) extracting historical neighbors and 2) computing edge likelihoods.

For the extraction of historical neighbors, we consider the common strategy of retrieving the k most
recent neighbors [39, 26], following the widely adopted implementation in DyGLib [42]. Alternative
neighbor extraction implementation are discussed in the appendix. The dominant cost arises from
locating the most recent neighbor among all existing neighbors via binary search, taking O(log davg)
per query. Since existing methods typically gather neighbors for both source and destination nodes,

Table 1: The big-O notation of the time complexity of different temporal graph learning methods,
where only the dominant term is retained for clarity.

Methods Extract historical neighbors Compute edge likelihoods

TGAT [38] B(1 + q)(1 + k) log davg B(1 + q)k2F 2

TGN [26] B(1 + q) log davg B(1 + q)kF 2

GraphMixer [6] B(1 + q) log davg B(1 + q)kF 2

DyGFormer [42] B(1 + q) log davg B(1 + q)(kF 2 + k2F )
CRAFT B log davg BqF 2 +BkF 2 +BqkF
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Table 2: MRR scores (%) of CRAFT and baselines on unseen-dominant datasets. The first, second,
and third place rankings are highlighted, accordingly.

Datasets ML-20M Taobao Yelp GoogleLocal Flickr YouTube WikiLink tgbl-review tgbl-comment

JODIE 21.16±0.73 48.36±2.18 69.88±0.31 41.86±1.49 46.21±0.83 41.67±2.86 57.94±1.33 41.43±0.15 -
DyRep 19.00±1.69 40.03±2.40 57.69±1.05 37.73±1.34 38.04±4.19 35.12±4.13 42.63±1.33 40.06±0.59 28.90±3.30

TGAT 10.47±0.20 - - 19.78±0.24 23.53±3.35 43.56±2.53 - 19.64±0.23 56.20±2.11

TGN 23.99±0.20 60.28±0.54 69.79±0.24 54.13±1.97 46.03±6.78 55.16±5.89 62.94±2.16 37.48±0.23 37.90±2.10

CAWN 12.31±0.02 - 25.71±0.09 18.26±0.02 48.69±6.08 47.55±1.08 - 19.30±0.10 -
GraphMixer 21.97±0.17 31.54±0.02 33.96±0.19 21.31±0.14 45.01±0.08 58.87±0.12 48.57±0.02 36.89±1.50 76.17±0.17

DyGFormer - - 21.68±0.20 18.39±0.02 49.58±2.87 46.08±3.44 - 22.39±1.52 67.03±0.14

SGNN-HN 33.12±0.01 68.58±0.21 69.34±0.44 62.88±0.51 60.15±0.20 59.64±0.22 69.37±0.39 35.62±0.53 55.24±0.22

CRAFT 35.91±0.65 70.68±0.42 72.69±0.61 62.35±0.46 62.34±0.84 58.92±0.16 75.48±0.84 41.77±0.06 91.72±0.59

Rel.Imprv. 49.69% 17.25% 4.02% 15.19% 25.74% 0.08% 19.92% 0.82% 20.41%
Abs.Imprv. 11.92 10.40 2.81 8.22 12.76 0.05 12.54 0.34 15.55

Table 3: MRR scores (%) of CRAFT-R and baselines on seen-dominant datasets. The first, second,
and third place rankings are highlighted accordingly.

Datasets wikipedia reddit mooc lastfm uci Flights tgbl-coin tgbl-flights

JODIE 76.48±1.72 77.16±1.27 19.91±3.06 18.49±2.87 51.43±1.74 20.37±4.18 - -
DyRep 67.42±4.21 72.33±2.14 17.71±1.27 17.76±6.56 14.00±2.71 15.62±0.47 45.20±4.60 55.60±1.40

TGAT 72.72±1.50 78.03±0.25 31.55±4.14 24.10±1.26 31.50±0.48 53.90±1.07 60.92±0.57 -
TGN 82.22±0.39 79.25±0.24 39.03±4.53 25.59±4.43 45.29±6.43 64.24±2.11 58.60±3.70 70.50±2.00

CAWN 86.07±0.08 87.66±0.04 27.02±0.57 35.10±0.34 66.96±0.48 80.06±2.10 - -
GraphMixer 73.57±1.48 70.87±0.38 29.02±0.28 26.76±1.42 59.58±1.00 42.26±0.49 75.57±0.27 -
DyGFormer 88.69±0.04 88.70±0.05 42.20±1.31 46.50±0.51 76.61±0.26 84.13±3.46 75.17±0.38 -
SGNN-HN 82.22±0.35 87.42±0.04 57.25±0.17 40.72±0.26 57.23±0.39 80.80±0.14 78.46±0.40 89.03±0.03

CRAFT-R 88.25±0.26 89.33±0.11 62.32±0.39 55.21±0.23 75.11±0.09 83.16±0.16 88.47±0.25 91.39±0.03

Rel.Imprv. -0.50% 0.71% 47.68% 18.73% -1.96% -1.15% 17.07% 29.63%
Abs.Imprv. -0.44 0.63 20.12 8.71 -1.50 -0.97 12.90 20.89

this step takes O(B(1 + q) log davg). TGAT, which aggregates two-hop neighborhoods via two
attention layers, incurs O(B(1 + q)(1 + k) log davg). In contrast, CRAFT only considers neighbors
of the source, reducing the complexity to O(B log davg). This reduction is particularly beneficial in
real-world scenarios, where it is common to evaluate many candidate destinations per source, making
efficient neighbor retrieval critical for scalable inference.

To compute edge likelihoods, most existing methods compute node representations by aggregating
each node’s historical neighbors, followed by an MLP for prediction. The aggregation step dominates
computation. TGN, TGAT, GraphMixer, and DyGFormer employ one graph attention layer, two
graph attention layers, an MLP-Mixer, and a Transformer encoder, respectively, each incurring
various computational complexities per node: O(kF 2), O(k2F 2), O(kF 2), and O(kF 2 + k2F ). In
contrast, CRAFT computes edge likelihoods directly using cross-attention between destinations and
the source’s neighbors, requiring O(BqF 2 +BkF 2) for projections and O(BqkF ) for attention per
batch. This approach eliminates the need for neighbor feature projections for each node, significantly
improving efficiency, especially when q or k is large.

Table 1 summarizes the results, showing that CRAFT offers superior efficiency in both neighbor
extraction and edge likelihood computation. These findings highlight the advantage of CRAFT’s
simple architecture, making it well-suited for large-scale dynamic systems in practical applications.

5 Experiments
In this section, we investigate the effectiveness and efficiency of CRAFT on future link prediction.
To fully evaluate the performance of CRAFT on predicting seen and unseen edges, we conduct
experiments on 17 datasets, including the TGB-Seq benchmark [40] (ML-20M, Taobao, Yelp,
GoogleLocal, Flickr, YouTube, WikiLink), the TGB benchmark [12] (tgbl-review, tgbl-comment,
tgbl-coin, tgbl-flights), and six commonly used datasets (wikipedia, reddit, mooc, lastfm, uci, Flights).
We compare CRAFT with seven state-of-the-art continuous-time temporal graph models, including
JODIE [16], DyRep [31], TGAT [38], TGN [26], CAWN [34], GraphMixer [6], and DyGFormer [42].
The details of datasets and baselines are provided in the appendix.

Experimental Settings. We follow the evaluation protocol of TGB-Seq and TGB benchmarks
for all datasets. We use MRR as the evaluation metric, follow the original split of datasets, or
chronologically split the datasets into training, validation, and test sets with 75%, 15%, and 15% of
the edges, respectively. We adopt the negative samples from the benchmarks or randomly sample 100
negatives from all potential destinations. Importantly, we perform collision checks to ensure that no
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TGAT/DyGFormer with and without learnable embeddings (LE).

positive edges are sampled as negative edges for small datasets, which may lead to different results
compared to prior works. We follow the configurations in [40, 12, 42] to use the same batch size
(200 or 400, accordingly) and learning rate (1e-4) across all methods. The baseline implementation is
based on the DyGLib library [42]. For fair comparison, the average results of 3 runs are reported.
Other implementation details are provided in the appendix.

5.1 Effectiveness and Efficiency of CRAFT on Future Link Prediction

Experimental Setup. We categorize the datasets into two groups based on their seen edge ratio. For
datasets with a high ratio of seen edges (referred to as seen-dominant datasets), we apply repeat
time encoding, and denote the variant as CRAFT-R. For datasets with minimal seen edges (referred
to as unseen-dominant datasets), we use the default CRAFT model without repeat time encoding.
The results for all baselines on the TGB-Seq and TGB datasets are directly taken from previous
studies [40, 41]. Missing entries indicate cases where the model failed due to either out-of-time
(unable to complete a single training epoch within 24 hours) or out-of-memory on a 32GB GPU.

Effectiveness Evaluation. Table 2 and Table 3 present the MRR scores on unseen-dominant and
seen-dominant datasets, respectively, with Rel.Imprv. and Abs.Imprv. indicating the relative and
absolute improvements over the second-best baseline. Overall, CRAFT achieves the best results on a
majority of benchmarks, with over 10% relative improvements on 10 out of 17 datasets compared to
the second-best baseline. These results confirm the effectiveness of our architecture and highlight the
value of its two key components: unique node identifiers and target-aware matching, which is opposed
to the traditional memory and aggregation modules in the baselines. Specifically, CRAFT exhibits
superior performance on unseen-dominant datasets, demonstrating that it successfully addresses a key
limitation of prior models, which often fail on unseen edge prediction. For seen-dominant datasets,
CRAFT-R still performs best on most benchmarks, with only minor underperformance (less than 2%)
compared to DyGFormer on three datasets. The reason may be attributed to DyGFormer’s use of
additional heuristics, such as neighbor co-occurrence frequency, which could provide additional gains
in these datasets. However, such design increases computational complexity and lead to out-of-time
or out-of-memory failures on large-scale datasets such as WikiLink and tgbl-flights. In contrast,
CRAFT maintains high performance with a simpler and more generalizable architecture.

Efficiency Evaluation. We evaluate the efficiency of CRAFT by measuring both inference and
training times on three representative datasets of increasing scale: Flights (1M edges), Yelp (19M
edges), and WikiLink (34M edges). Figure 4 presents the inference time for CRAFT and baseline
methods, showing that CRAFT completes prediction on all test edges (each with 100 negative
samples) significantly faster than all baselines. Notably, on the larger datasets Yelp and WikiLink,
CRAFT requires less than half the time of the most efficient baseline, JODIE. This highlights
CRAFT’s practical suitability for real-world deployment, where temporal graphs are large and fast
inference is essential. Training time comparisons are included in the appendix.
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5.2 Effect of Learnable Node Embeddings and Cross-attention Mechanism

Experimental Setup. To verify that unique node identifiers and target-aware matching are critical for
future link prediction, we incorporate our designed learnable node embeddings into existing methods,
to explore whether it can results in performance improvements. We choose TGAT and DyGFormer
as representative methods because they also rely on attention mechanisms. The only difference is
the matching mechanisms, where TGAT adopts independent matching, while DyGFormer adopts
neighborhood matching. After replacing the original node features with learnable node embeddings,
we denotes the modified variants as TGAT-LE and DyGFormer-LE. For fair comparison, we also
use learnable positional encodings for the source and destination neighborhoods in DyGFormer-LE,
which is consistent with CRAFT, and we remove the neighbor co-occurrence frequency encoding for
DyGFormer-LE. Detailed implementations are provided in the appendix. We evaluate all methods on
three large and challenging datasets with minimal seen edges, GoogleLocal, Yelp, and tgbl-review.

Results. As shown in Figure 5, comparing each method with its LE variant, we observe significant
performance improvements, particularly for TGAT-LE, which achieves up to fivefold gains on Yelp.
These results show that learnable node embeddings improve the expressive power of these models and
are essential for generalizing to unseen edges in real-world applications. Despite these improvements,
both TGAT-LE and DyGFormer-LE still underperform our CRAFT. The performance gap indicates
again the importance of target-aware matching, which enables the model to directly assess whether
the destination node is compatible with the source context. These findings confirm that the two
crucial components in our CRAFT, learnable node embeddings and cross-attention-based target-aware
matching, are essential for future link prediction.

5.3 Ablation Study: Effect of Positional, Elapsed Time, and Repeat Time Encoding

Experimental Setup. We conduct ablation studies to evaluate the impact of three encoding com-
ponents in CRAFT: positional encoding, elapsed time encoding, and repeat time encoding. For
each study, we remove one component while keeping the others intact, and denote the resulting
variants as w/o PosEnc, w/o Elapsed, and w/o Repeat, respectively. We evaluate these variants on five
representative datasets: wikipedia, mooc, uci, tgbl-review, and GoogleLocal.

Results. We find that all three encodings can positively impact the performance of CRAFT. Among
them, the elapsed time encoding contributes significantly across all datasets, as it effectively captures
the temporal status of each destination node. Positional encoding is especially critical on mooc and
GoogleLocal, demonstrating its ability to capture fine-grained temporal order and enable the model to
effectively learn from sequential dynamics in these domains. Repeat time encoding plays a prominent
role on wikipedia and uci, which exhibit a high proportion of seen edges. While mooc also contains
many seen edges, the gain from repeat time encoding is relatively small, possibly because learnable
node embeddings and target-aware matching already capture the relationships between the source
and destination in this case. Overall, these results confirm the necessity of all three encodings in
enabling CRAFT to handle a broad range of temporal dynamics effectively.

6 Conclusion

In this paper, we revisit the architectural foundations of temporal graph learning and identify two
essential modeling requirements for future link prediction: representing nodes with unique identifiers
and performing target-aware matching between the source and destination nodes, which are over-
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looked in existing methods. Motivated by these observations, we proposed CRAFT, a simple yet
effective framework that replaces memory and aggregation modules with learnable node embeddings
and a cross-attention mechanism. This design equips CRAFT with strong expressive power and the
capacity to explicitly capture destination-conditioned relevance, allowing it to generalize effectively to
both seen and unseen edge prediction. Extensive evaluations demonstrate the superiority of CRAFT,
establishing it as a practical and scalable solution for real-world future link prediction tasks.
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Table 4: Datasets statistics: seven TGB-Seq datasets, four TGB datasets, and six commonly used
datasets. This table is partially adopted from TGB-Seq [40].

Dataset Nodes (users/items) Edges Timestamps Repeat ratio(%) Bipartite Domain
ML-20M 100,785/9,646 14,494,325 9,993,250 0 ✓ Movie rating
Taobao 760,617/863,016 18,853,792 139,171 16.58 ✓ E-commerce interaction
Yelp 1,338,688/405,081 19,760,293 14,646,734 25.18 ✓ Business review
GoogleLocal 206,244/267,336 1,913,967 1,771,060 0 ✓ Business review
Flickr 233,836 7,223,559 134 0 × Who-To-Follow
YouTube 402,422 3,288,028 203 0 × Who-To-Follow
WikiLink 1,361,972 34,163,774 2,198 0 × Web link

tgbl-review 352,636/298,590 4,873,540 6,865 0.19 ✓ E-commerce review
tgbl-coin 638,486 22,809,486 1,295,720 82.93 × Transaction
tgbl-comment 994,790 44,314,507 30,998,030 19.81 × Reply network
tgbl-flight 18,143 67,169,570 1,385 96.48 × Transport

Wikipedia 8,227/1,000 157,474 152,757 88.41 ✓ Interaction
Reddit 10,000/984 672,447 669,065 88.32 ✓ Reply network
MOOC 7,047/97 411,749 345,600 56.66 ✓ Interaction
LastFM 980/1,000 1,293,103 1,283,614 88.01 ✓ Interaction
UCI 1,899 59,835 58,911 66.06 × Social contact
Flights 13,169 1,927,145 122 79.50 × Transport

A Time Complexity Analysis

A.1 Other strategies for extracting historical neighbors

An alternative approach for extracting historical neighbors is to maintain a fixed-size window of k
most recent neighbors, as implemented in TGB [12]. This strategy necessitates updating the window
by removing the oldest neighbor and adding the new one, incurring a cost of O(B logB) per batch
for any temporal graph learning method [12]. For existing methods except CRAFT, this approach
is more efficient than maintaining all historical neighbors (Section 4.3) when (1 + q) log davg <
logB. However, this window-based strategy presents two significant challenges: 1) It requires
processing edges in strict chronological order, preventing edge shuffling for sequence-based methods,
potentially leading to performance degradation. (We shuffle the training set during CRAFT’s training
process to learn more robust embeddings for CRAFT.) 2) For datasets with multiple edges occurring
simultaneously, this strategy may be infeasible, as the neighbor window could include interactions at
the prediction time, rather than before the prediction time, resulting in data leakage.

B Experiment Details

B.1 Code Availability

The implementation of CRAFT and baselines are based on DyGLib [42]. The implementation of
CRAFT and all commands to reproduce the experimental results are publicly available at https:
//github.com/luyi256/CRAFT.

B.2 Datasets

In our experiments, we adopt a diverse set of 17 datasets: seven from TGB-Seq [40], four from
TGB [12], and six commonly used datasets in the field. Table 4 presents the key statistics of these
datasets for reference. Detailed descriptions of the datasets are available in their respective original
papers: TGB-Seq datasets in [40], TGB datasets in [12], wikipedia, reddit, mooc, lastfm in [16], uci
in [22], Flights in [23]. While other datasets have been proposed in the literature [23], we exclude
those with an insufficient number of nodes to ensure robust evaluation.

B.3 Baselines

We provide a concise overview of the baselines used in our experiments, focusing on their memory
and aggregation modules.
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Figure 7: Evaluating the impact of learnable node embeddings and cross-attention: CRAFT and more
variants of DyGFormer.

JODIE incorporates both memory and aggregation modules. The memory module utilizes an RNN
to encode historical interactions into a compressed state. The aggregation (embedding) module
generates current node representations by projecting the memory states with a time-context vector.

DyRep employs an RNN for memory state updates, similar to JODIE. It leverages temporal graph
attention to transform interaction history, using these transformed representations as input for the
memory module. The aggregation module is a simple identity mapping, directly outputting nodes’
memory states.

TGN uses a GRU for memory state updates and temporal graph attention to aggregate historical
neighbor information for node embeddings. This information encompasses neighbors’ memory states,
features, edge features, and timestamps.

TGAT pioneered temporal graph attention, employing multiple layers to aggregate historical neigh-
bors without a memory module.

CAWN extracts temporal random walks for each node and applies an anonymization strategy to
ensure inductive learning. These causal anonymous walks are then encoded by an RNN to generate
node embeddings.

GraphMixer is a sequence-based method that simply aggregates historical neighbor information us-
ing MLP-Mixer without a memory module. It introduces a fixed time encoding scheme, demonstrating
superior effectiveness compared to trainable time encoding.

DyGFormer, another sequence-based method, utilizes a transformer encoder in its aggregation
module. It computes neighbor co-occurrence frequency between source and destination nodes to
capture their relationship in terms of common neighbors.

B.4 Collision Check for Small Datasets

For datasets with a small number of nodes (wikipedia, reddit, mooc, lastfm, uci and Flights), we
implement a collision check throughout the entire training process, including training, validation, and
testing phases. This approach enhances the performance of most temporal graph learning methods
compared to the results of the wikipedia and reddit datasets reported in [40]. This improvement
is attributed to the elimination of false positive samples, which prevents model confusion during
training and validation.

B.5 Implementation of TGAT-LE and DyGFormer-LE

In Section 5.2, we introduce TGAT-LE (TGAT with learnable embeddings) and DyGFormer-LE
(DyGFormer with learnable embeddings) to demonstrate the effectiveness of learnable embeddings
and the cross-attention mechanism. We provide detailed implementations of these variants below.

TGAT-LE. We replace node features with learnable embeddings without further modifications. While
the standard TGAT configuration uses two layers of temporal graph attention, TGAT-LE employs only
one layer. Due to the out-of-time issue, TGAT cannot run on the Yelp dataset with two layers [40].
Therefore, we evaluate TGAT with one layer for Yelp, while other TGAT results are directly adopted
from Table 2 in the main paper. Notably, TGAT-LE outperforms TGAT even with a single layer,
demonstrating the strong expressiveness of learnable embeddings.
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Figure 8: Comparisons of positional encoding vs. time encoding and BPR loss vs. BCE loss.

DyGFormer-LE. In this variant, we replace the original node features with learnable node embed-
dings and remove the neighbor co-occurrence frequency encoding scheme. Additionally, we replace
the time encoding with learnable positional encoding, similar to the approach used in CRAFT. After
passing through the transformer encoder, we use the output for the last neighbor of both the source
and destination nodes as their respective node representations, following a strategy commonly used
in Transformer-based sequence models [13]. To better differentiate this variant, we refer to it as
DyGFormer-last-pos, as it uses the output of the last neighbor from the transformer encoder and
adopts positional encoding.

More Variants of DyGFormer. An alternative strategy for producing node representations is to
use mean-pooling over the outputs of all neighbors from the transformer encoder. Additionally,
temporal information captured by positional encoding can, in principle, also be conveyed through
time encoding. We explore these options and introduce three variants of DyGFormer: 1) DyGFormer-
last-time, which uses the last neighbor output with time encoding instead of positional encoding;
2) DyGFormer-mean-pos, which uses mean-pooling with positional encoding; and 3) DyGFormer-
mean-time, which uses mean-pooling with time encoding. For time encoding, we concatenate a
time-context vector — obtained by projecting the time interval between the prediction time and each
historical interaction through a linear layer — with the corresponding node embedding. The results of
these variants are shown in Table 7. The performance of these variants varies across different datasets,
suggesting that different datasets exhibit varying interaction patterns. For instance, the GoogleLocal
dataset benefits from the mean-pooling strategy, possibly due to the consistent preferences of users
in this dataset. Nevertheless, we observe that all variants underperform CRAFT, highlighting the
superiority of our cross-attention mechanism.

B.6 Empirical Study: Positional Encoding vs. Time Encoding

In CRAFT, we use positional encoding to capture the temporal order of the source’s neighbors.
An alternative approach is time encoding, which encodes the time interval between the prediction
time and the timestamps of historical interactions. We compare the performance of CRAFT using
positional encoding and time encoding in Figure 8. For time encoding, we concatenate a time-
context vector, which is obtained by projecting the time interval through a linear layer, with the
node embedding of each neighbor of the source. These concatenated vectors serve as the key and
value inputs to the cross-attention module. In the figure, w/o PosEnc refers to models without either
positional or time encoding (same as in Figure 6), w/o TimeEnc refers to models using time encoding
instead of positional encoding, and the original CRAFT (or CRAFT-R) uses positional encoding. We
observe that CRAFT with positional encoding and CRAFT with time encoding perform comparably
across most datasets. However, CRAFT with positional encoding significantly outperforms CRAFT
with time encoding on the wikipedia and mooc datasets. This suggests that using time encoding
introduces excessive noise in these datasets, whereas the temporal order provided by positional
encoding is sufficient for capturing the sequential dynamics.

B.7 Empirical Study: BPR loss vs. BCE loss

Most temporal graph learning methods are trained using the Binary Cross Entropy (BCE) loss,
whereas CRAFT adopts the BPR loss. To assess the impact of the loss function, we compare the
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Figure 10: MRR scores of CRAFT, SASRec and SGNN-HN on unseen-dominant bipartite datasets.

performance of CRAFT trained with BPR loss and BCE loss in Figure 8. The results show that
both versions perform comparably across most datasets. Among the five evaluated datasets, only
GoogleLocal exhibits a performance gap greater than 1% between the two losses. These findings
highlight the robustness of CRAFT and indicate that its performance is largely unaffected by the
choice between BPR and BCE loss functions.

B.8 Comparing CRAFT with Recommendation Methods

As shown in [40], SGNN-HN, a sequential recommendation method, outperforms various temporal
graph learning methods on bipartite datasets. To further assess the effectiveness of CRAFT, we
compare it with two widely recognized recommendation methods: SASRec [13] and SGNN-HN [21],
on bipartite datasets. Figures 9 and 10 display the MRR scores of CRAFT (and CRAFT-R), SASRec,
and SGNN-HN on four small bipartite datasets and five large bipartite datasets, respectively. We
observe that CRAFT achieves the best performance on most datasets, except for the GoogleLocal
dataset, where it slightly trails behind SGNN-HN. Generally, CRAFT-R outperforms both SASRec
and SGNN-HN on seen-dominant datasets with a larger margin, compared to the results on unseen-
dominant datasets. These results suggest that existing recommendation methods perform worse than
temporal graph learning methods in seen-dominant scenarios, while our proposed CRAFT achieves
the best of both worlds.

Table 5: The tuning ranges of hyperparameters for CRAFT.

Hyperparameter Tuning Range Descriptions

Nneighbors [30, 60, 90, 120] the number of neighbors used for each source
phidden_dropout [0.1, 0.2, 0.3, 0.5] the dropout rate for FFNs and MLPs
pattn_dropout [0.1, 0.2] the dropout rate for attention scores
pemb_dropout [0.1, 0.2] the dropout rate for node embeddings
Nlayers [1, 2] the number of layers in cross-attention
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Figure 11: Training time per epoch of CRAFT and baselines on Flights, Yelp and WikiLink.

Table 6: Optimal hyperparameters and embedding size F for CRAFT, and the fixed batch size B on
various datasets.

Dataset Nneighbors phidden_dropout pattn_dropout pemb_dropout Nlayers B F

uci 30 0.3 0.2 0.2 1 200 64
wikipedia 120 0.1 0.1 0.2 1 200 64
reddit 120 0.1 0.2 0.1 1 200 64
mooc 30 0.1 0.1 0.1 2 200 64
Flights 90 0.2 0.2 0.2 1 200 64
lastfm 120 0.1 0.1 0.1 1 200 64
GoogleLocal 60 0.2 0.1 0.2 2 200 128
Flickr 90 0.1 0.1 0.2 1 400 128
YouTube 90 0.2 0.2 0.2 2 400 128
Taobao 60 0.2 0.1 0.2 2 400 128
Yelp 60 0.2 0.2 0.2 2 400 128
ML-20M 60 0.2 0.2 0.2 1 400 128
Wikilink 60 0.2 0.2 0.2 1 400 128
tgbl-review 120 0.1 0.2 0.1 1 200 128
tgbl-coin 60 0.2 0.2 0.2 1 200 128
tgbl-comment 60 0.2 0.1 0.2 1 200 128
tgbl-flight 90 0.2 0.2 0.2 1 200 128

B.9 Training Time Comparison

Figure 11 illustrates the training time per epoch of CRAFT and the baselines on the Flights, Yelp, and
WikiLink datasets. CRAFT is the most efficient method overall, with the exception of being slightly
slower than JODIE and DyRep on the smallest dataset, Flights. As the dataset size increases, the
efficiency advantage of CRAFT becomes more pronounced. For instance, on the WikiLink dataset,
many temporal graph learning methods fail to complete a single training epoch within 24 hours,
whereas CRAFT finishes one epoch in just 0.6 hours. Compared to the most efficient baseline, JODIE,
CRAFT is 1.5x faster on the WikiLink dataset.

B.10 Hyperparameters

The hyperparameters for the baselines on the TGB-Seq benchmark, TGB benchmark, and six
commonly used datasets (wikipedia, reddit, mooc, lastfm, uci, and Flights) are selected based on
the best configurations reported in [40],[12], and[42], respectively. Thanks to CRAFT’s simple
architecture, it involves only a limited number of hyperparameters. We fix the batch size across all
methods, and set the embedding size to 64 for small datasets and 128 for large ones. Table 5 presents
the hyperparameters and their tuning ranges. We perform grid search over these ranges using the
validation set to determine the optimal settings. The final hyperparameters for CRAFT, along with
the batch size and embedding size per dataset, are summarized in Table 6.
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C Discussion

C.1 Broader Impact

This paper introduces CRAFT, an efficient and effective temporal graph learning method for future
link prediction. CRAFT can be applied across a range of real-world scenarios, including user
recommendation on social media, product recommendation on e-commerce platforms, and interaction
forecasting in social, financial, and gaming networks. By enabling more accurate and scalable future
link prediction, CRAFT has the potential to enhance user experience and improve overall system
utility in these domains.

C.2 Transductive and Inductive Future Link Prediction

The transductive setting for future link prediction focuses on forecasting future links for nodes
observed during training, while the inductive setting targets predicting links involving previously
unseen nodes [26]. In this paper, we do not explicitly separate the transductive and inductive tasks.
All datasets follow the original training, validation, and test splits provided by existing benchmarks
or are split chronologically. As a result, our evaluation naturally encompasses both settings.

CRAFT is primarily designed for transductive future link prediction, as it relies on historical interac-
tions to learn meaningful node embeddings. In the inductive case, where the source or destination
node has little to no interaction history, the task becomes significantly more challenging. Without
prior interactions, it is difficult for any method to infer a new node’s behavioral preferences. This
scenario aligns with the well-known cold-start problem in recommendation systems [27], where com-
mon solutions involve incorporating node profile features and estimating similarity with known nodes.
We view this inductive scenario as a distinct challenge from standard future link prediction, which
focuses on leveraging interaction history to model node preferences and predict future links based
on dynamic behavioral patterns. Addressing the inductive case effectively may require additional
assumptions or auxiliary data beyond the scope of this work.

Another perspective on inductive learning is to eliminate training costs by expecting the model to
generalize directly to unobserved nodes, assuming these nodes have sufficient historical interactions
to infer their preferences. However, as demonstrated in Section 5.2, incorporating learnable node
embeddings substantially improves the performance of temporal graph learning methods by enhancing
their expressive power. Moreover, the experimental results in Table 2 and Table 3 show that CRAFT
consistently outperforms baselines designed for inductive learning, despite their more complex
architectures. While inductive learning remains a valuable research direction, we argue that learning
from historical interactions is a fundamental requirement for future link prediction, which depends on
accurately modeling node-specific interaction patterns. Therefore, training CRAFT on all available
historical interactions to derive meaningful node embeddings offers a more effective approach.

C.3 Negative Sampling Strategies

Poursafaei et al. [23] proposed two challenging negative sampling strategies for future link prediction:
historical negative sampling and inductive negative sampling. In this work, we adopt multiple
negative samples per positive instance and follow the random negative sampling strategy used in prior
benchmarks [12, 40], as using multiple random negatives per sample is sufficiently challenging for
the models and provides a fair basis for comparison.

C.4 Features

The current version of CRAFT does not incorporate any node or edge features. This decision is
motivated by the fact that most benchmark datasets lack such features, and even when available,
they often provide limited additional value for future link prediction, as observed in prior work [6].
Nevertheless, CRAFT is flexible and can easily accommodate features if needed. Node features
can be concatenated with learnable node embeddings, while edge features can be appended to the
source’s neighbor embeddings or combined with positional encodings to indicate edge types.
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C.5 Limitations and Future Work

CRAFT is specifically designed for future link prediction and does not directly support other tasks
such as dynamic node classification. Our design focuses on modeling the relationship between
the destination node and the source node’s interaction history, without maintaining dynamic node
representations over time. To extend CRAFT to support dynamic node classification, a straightforward
approach is to update node embeddings continuously via gradient descent. This has the potential
advantage of enabling a single model to support multiple tasks, eliminating the need for training
separate models as required in prior work. Exploring such unified and flexible modeling capabilities
is a promising direction for future research.
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